
NAME
fts - traverse a file hierarchy

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <fts.h>

FTS *

fts_open(char * const *path_argv, int options,

int (*compar)(const FTSENT * const *, const FTSENT * const *));

FTSENT *

fts_read(FTS *ftsp);

FTSENT *

fts_children(FTS *ftsp, int options);

int

fts_set(FTS *ftsp, FTSENT *f, int options);

void

fts_set_clientptr(FTS *ftsp, void *clientdata);

void *

fts_get_clientptr(FTS *ftsp);

FTS *

fts_get_stream(FTSENT *f);

int

fts_close(FTS *ftsp);

DESCRIPTION
The fts functions are provided for traversing UNIX file hierarchies. A simple overview is that the

fts_open() function returns a "handle" on a file hierarchy, which is then supplied to the other fts
functions. The function fts_read() returns a pointer to a structure describing one of the files in the file

hierarchy. The function fts_children() returns a pointer to a linked list of structures, each of which

describes one of the files contained in a directory in the hierarchy. In general, directories are visited two

FTS(3) FreeBSD Library Functions Manual FTS(3)

FreeBSD 14.0-RELEASE-p11 January 12, 2014 FreeBSD 14.0-RELEASE-p11



distinguishable times; in pre-order (before any of their descendants are visited) and in post-order (after

all of their descendants have been visited). Files are visited once. It is possible to walk the hierarchy

"logically" (ignoring symbolic links) or physically (visiting symbolic links), order the walk of the

hierarchy or prune and/or re-visit portions of the hierarchy.

Two structures are defined (and typedef’d) in the include file <fts.h>. The first is FTS, the structure that

represents the file hierarchy itself. The second is FTSENT, the structure that represents a file in the file

hierarchy. Normally, an FTSENT structure is returned for every file in the file hierarchy. In this manual

page, "file" and "FTSENT structure" are generally interchangeable.

The FTS structure contains space for a single pointer, which may be used to store application data or

per-hierarchy state. The fts_set_clientptr() and fts_get_clientptr() functions may be used to set and

retrieve this pointer. This is likely to be useful only when accessed from the sort comparison function,

which can determine the original FTS stream of its arguments using the fts_get_stream() function. The

two get functions are also available as macros of the same name.

The FTSENT structure contains at least the following fields, which are described in greater detail below:

typedef struct _ftsent {

int fts_info; /* status for FTSENT structure */

char *fts_accpath; /* access path */

char *fts_path; /* root path */

size_t fts_pathlen; /* strlen(fts_path) */

char *fts_name; /* file name */

size_t fts_namelen; /* strlen(fts_name) */

long fts_level; /* depth (-1 to N) */

int fts_errno; /* file errno */

long long fts_number; /* local numeric value */

void *fts_pointer; /* local address value */

struct ftsent *fts_parent; /* parent directory */

struct ftsent *fts_link; /* next file structure */

struct ftsent *fts_cycle; /* cycle structure */

struct stat *fts_statp; /* stat(2) information */

} FTSENT;

These fields are defined as follows:

fts_info One of the following values describing the returned FTSENT structure and the file it

represents. With the exception of directories without errors (FTS_D), all of these entries

are terminal, that is, they will not be revisited, nor will any of their descendants be visited.

FTS(3) FreeBSD Library Functions Manual FTS(3)

FreeBSD 14.0-RELEASE-p11 January 12, 2014 FreeBSD 14.0-RELEASE-p11



FTS_D A directory being visited in pre-order.

FTS_DC A directory that causes a cycle in the tree. (The fts_cycle field of the

FTSENT structure will be filled in as well.)

FTS_DEFAULT Any FTSENT structure that represents a file type not explicitly described

by one of the other fts_info values.

FTS_DNR A directory which cannot be read. This is an error return, and the

fts_errno field will be set to indicate what caused the error.

FTS_DOT A file named ‘.’ or ‘..’ which was not specified as a file name to

fts_open() (see FTS_SEEDOT).

FTS_DP A directory being visited in post-order. The contents of the FTSENT

structure will be unchanged from when the directory was visited in pre-

order, except for the fts_info field.

FTS_ERR This is an error return, and the fts_errno field will be set to indicate what

caused the error.

FTS_F A regular file.

FTS_NS A file for which no stat(2) information was available. The contents of

the fts_statp field are undefined. This is an error return, and the

fts_errno field will be set to indicate what caused the error.

FTS_NSOK A file for which no stat(2) information was requested. The contents of

the fts_statp field are undefined.

FTS_SL A symbolic link.

FTS_SLNONE A symbolic link with a non-existent target. The contents of the fts_statp

field reference the file characteristic information for the symbolic link

itself.

fts_accpath A path for accessing the file from the current directory.

fts_path The path for the file relative to the root of the traversal. This path contains the path

specified to fts_open() as a prefix.

FTS(3) FreeBSD Library Functions Manual FTS(3)

FreeBSD 14.0-RELEASE-p11 January 12, 2014 FreeBSD 14.0-RELEASE-p11



fts_pathlen The length of the string referenced by fts_path.

fts_name The name of the file.

fts_namelen The length of the string referenced by fts_name.

fts_level The depth of the traversal, numbered from -1 to N, where this file was found. The

FTSENT structure representing the parent of the starting point (or root) of the traversal is

numbered FTS_ROOTPARENTLEVEL (-1), and the FTSENT structure for the root itself

is numbered FTS_ROOTLEVEL (0).

fts_errno Upon return of a FTSENT structure from the fts_children() or fts_read() functions, with its

fts_info field set to FTS_DNR, FTS_ERR or FTS_NS, the fts_errno field contains the

value of the external variable errno specifying the cause of the error. Otherwise, the

contents of the fts_errno field are undefined.

fts_number This field is provided for the use of the application program and is not modified by the fts
functions. It is initialized to 0.

fts_pointer This field is provided for the use of the application program and is not modified by the fts
functions. It is initialized to NULL.

fts_parent A pointer to the FTSENT structure referencing the file in the hierarchy immediately above

the current file, i.e., the directory of which this file is a member. A parent structure for the

initial entry point is provided as well, however, only the fts_level, fts_number and

fts_pointer fields are guaranteed to be initialized.

fts_link Upon return from the fts_children() function, the fts_link field points to the next structure

in the NULL-terminated linked list of directory members. Otherwise, the contents of the

fts_link field are undefined.

fts_cycle If a directory causes a cycle in the hierarchy (see FTS_DC), either because of a hard link

between two directories, or a symbolic link pointing to a directory, the fts_cycle field of

the structure will point to the FTSENT structure in the hierarchy that references the same

file as the current FTSENT structure. Otherwise, the contents of the fts_cycle field are

undefined.

fts_statp A pointer to stat(2) information for the file.

A single buffer is used for all of the paths of all of the files in the file hierarchy. Therefore, the fts_path

FTS(3) FreeBSD Library Functions Manual FTS(3)

FreeBSD 14.0-RELEASE-p11 January 12, 2014 FreeBSD 14.0-RELEASE-p11



and fts_accpath fields are guaranteed to be NUL-terminated only for the file most recently returned by

fts_read(). To use these fields to reference any files represented by other FTSENT structures will

require that the path buffer be modified using the information contained in that FTSENT structure’s

fts_pathlen field. Any such modifications should be undone before further calls to fts_read() are

attempted. The fts_name field is always NUL-terminated.

FTS_OPEN
The fts_open() function takes a pointer to an array of character pointers naming one or more paths which

make up a logical file hierarchy to be traversed. The array must be terminated by a NULL pointer.

There are a number of options, at least one of which (either FTS_LOGICAL or FTS_PHYSICAL) must

be specified. The options are selected by or’ing the following values:

FTS_COMFOLLOW

This option causes any symbolic link specified as a root path to be followed

immediately whether or not FTS_LOGICAL is also specified.

FTS_LOGICAL This option causes the fts routines to return FTSENT structures for the targets of

symbolic links instead of the symbolic links themselves. If this option is set, the only

symbolic links for which FTSENT structures are returned to the application are those

referencing non-existent files. Either FTS_LOGICAL or FTS_PHYSICAL must be

provided to the fts_open() function.

FTS_NOCHDIR To allow descending to arbitrary depths (independent of {PATH_MAX}) and

improve performance, the fts functions change directories as they walk the file

hierarchy. This has the side-effect that an application cannot rely on being in any

particular directory during the traversal. The FTS_NOCHDIR option turns off this

feature, and the fts functions will not change the current directory. Note that

applications should not themselves change their current directory and try to access

files unless FTS_NOCHDIR is specified and absolute pathnames were provided as

arguments to fts_open().

FTS_NOSTAT By default, returned FTSENT structures reference file characteristic information (the

statp field) for each file visited. This option relaxes that requirement as a

performance optimization, allowing the fts functions to set the fts_info field to

FTS_NSOK and leave the contents of the statp field undefined.

FTS_PHYSICAL This option causes the fts routines to return FTSENT structures for symbolic links

themselves instead of the target files they point to. If this option is set, FTSENT

structures for all symbolic links in the hierarchy are returned to the application.

FTS(3) FreeBSD Library Functions Manual FTS(3)

FreeBSD 14.0-RELEASE-p11 January 12, 2014 FreeBSD 14.0-RELEASE-p11



Either FTS_LOGICAL or FTS_PHYSICAL must be provided to the fts_open()

function.

FTS_SEEDOT By default, unless they are specified as path arguments to fts_open(), any files named

‘.’ or ‘..’ encountered in the file hierarchy are ignored. This option causes the fts
routines to return FTSENT structures for them.

FTS_XDEV This option prevents fts from descending into directories that have a different device

number than the file from which the descent began.

The argument compar() specifies a user-defined function which may be used to order the traversal of the

hierarchy. It takes two pointers to pointers to FTSENT structures as arguments and should return a

negative value, zero, or a positive value to indicate if the file referenced by its first argument comes

before, in any order with respect to, or after, the file referenced by its second argument. The

fts_accpath, fts_path and fts_pathlen fields of the FTSENT structures may never be used in this

comparison. If the fts_info field is set to FTS_NS or FTS_NSOK, the fts_statp field may not either. If

the compar() argument is NULL, the directory traversal order is in the order listed in path_argv for the

root paths, and in the order listed in the directory for everything else.

FTS_READ
The fts_read() function returns a pointer to an FTSENT structure describing a file in the hierarchy.

Directories (that are readable and do not cause cycles) are visited at least twice, once in pre-order and

once in post-order. All other files are visited at least once. (Hard links between directories that do not

cause cycles or symbolic links to symbolic links may cause files to be visited more than once, or

directories more than twice.)

If all the members of the hierarchy have been returned, fts_read() returns NULL and sets the external

variable errno to 0. If an error unrelated to a file in the hierarchy occurs, fts_read() returns NULL and

sets errno appropriately. If an error related to a returned file occurs, a pointer to an FTSENT structure is

returned, and errno may or may not have been set (see fts_info).

The FTSENT structures returned by fts_read() may be overwritten after a call to fts_close() on the same

file hierarchy stream, or, after a call to fts_read() on the same file hierarchy stream unless they represent

a file of type directory, in which case they will not be overwritten until after a call to fts_read() after the

FTSENT structure has been returned by the function fts_read() in post-order.

FTS_CHILDREN
The fts_children() function returns a pointer to an FTSENT structure describing the first entry in a

NULL-terminated linked list of the files in the directory represented by the FTSENT structure most

recently returned by fts_read(). The list is linked through the fts_link field of the FTSENT structure, and

FTS(3) FreeBSD Library Functions Manual FTS(3)

FreeBSD 14.0-RELEASE-p11 January 12, 2014 FreeBSD 14.0-RELEASE-p11



is ordered by the user-specified comparison function, if any. Repeated calls to fts_children() will

recreate this linked list.

As a special case, if fts_read() has not yet been called for a hierarchy, fts_children() will return a pointer

to the files in the logical directory specified to fts_open(), i.e., the arguments specified to fts_open().

Otherwise, if the FTSENT structure most recently returned by fts_read() is not a directory being visited

in pre-order, or the directory does not contain any files, fts_children() returns NULL and sets errno to

zero. If an error occurs, fts_children() returns NULL and sets errno appropriately.

The FTSENT structures returned by fts_children() may be overwritten after a call to fts_children(),

fts_close() or fts_read() on the same file hierarchy stream.

Option may be set to the following value:

FTS_NAMEONLY Only the names of the files are needed. The contents of all the fields in the

returned linked list of structures are undefined with the exception of the fts_name

and fts_namelen fields.

FTS_SET
The function fts_set() allows the user application to determine further processing for the file f of the

stream ftsp. The fts_set() function returns 0 on success, and -1 if an error occurs. Option must be set to

one of the following values:

FTS_AGAIN Re-visit the file; any file type may be re-visited. The next call to fts_read() will

return the referenced file. The fts_stat and fts_info fields of the structure will be

reinitialized at that time, but no other fields will have been changed. This option is

meaningful only for the most recently returned file from fts_read(). Normal use is for

post-order directory visits, where it causes the directory to be re-visited (in both pre

and post-order) as well as all of its descendants.

FTS_FOLLOW The referenced file must be a symbolic link. If the referenced file is the one most

recently returned by fts_read(), the next call to fts_read() returns the file with the

fts_info and fts_statp fields reinitialized to reflect the target of the symbolic link

instead of the symbolic link itself. If the file is one of those most recently returned by

fts_children(), the fts_info and fts_statp fields of the structure, when returned by

fts_read(), will reflect the target of the symbolic link instead of the symbolic link

itself. In either case, if the target of the symbolic link does not exist the fields of the

returned structure will be unchanged and the fts_info field will be set to

FTS_SLNONE.

FTS(3) FreeBSD Library Functions Manual FTS(3)

FreeBSD 14.0-RELEASE-p11 January 12, 2014 FreeBSD 14.0-RELEASE-p11



If the target of the link is a directory, the pre-order return, followed by the return of

all of its descendants, followed by a post-order return, is done.

FTS_SKIP No descendants of this file are visited. The file may be one of those most recently

returned by either fts_children() or fts_read().

FTS_CLOSE
The fts_close() function closes a file hierarchy stream ftsp and restores the current directory to the

directory from which fts_open() was called to open ftsp. The fts_close() function returns 0 on success,

and -1 if an error occurs.

ERRORS
The function fts_open() may fail and set errno for any of the errors specified for the library functions

open(2) and malloc(3).

The function fts_close() may fail and set errno for any of the errors specified for the library functions

chdir(2) and close(2).

The functions fts_read() and fts_children() may fail and set errno for any of the errors specified for the

library functions chdir(2), malloc(3), opendir(3), readdir(3) and stat(2).

In addition, fts_children(), fts_open() and fts_set() may fail and set errno as follows:

[EINVAL] The options were invalid, or the list were empty.

SEE ALSO
find(1), chdir(2), stat(2), ftw(3), qsort(3)

HISTORY
The fts interface was first introduced in 4.4BSD. The fts_get_clientptr(), fts_get_stream(), and

fts_set_clientptr() functions were introduced in FreeBSD 5.0, principally to provide for alternative

interfaces to the fts functionality using different data structures.

BUGS
The fts_open() function will automatically set the FTS_NOCHDIR option if the FTS_LOGICAL option

is provided, or if it cannot open(2) the current directory.

FTS(3) FreeBSD Library Functions Manual FTS(3)

FreeBSD 14.0-RELEASE-p11 January 12, 2014 FreeBSD 14.0-RELEASE-p11


