
NAME
gdb - external kernel debugger

SYNOPSIS
makeoptions DEBUG=-g
options DDB

DESCRIPTION
The gdb kernel debugger is a variation of gdb(1) (ports/devel/gdb) which understands some aspects of

the FreeBSD kernel environment. It can be used in a number of ways:

+o It can be used to examine the memory of the processor on which it runs.

+o It can be used to analyse a processor dump after a panic.

+o It can be used to debug another system interactively via a serial or firewire link. In this mode, the

processor can be stopped and single stepped.

+o With a firewire link, it can be used to examine the memory of a remote system without the

participation of that system. In this mode, the processor cannot be stopped and single stepped, but it

can be of use when the remote system has crashed and is no longer responding.

When used for remote debugging, gdb requires the presence of the ddb(4) kernel debugger. Commands

exist to switch between gdb and ddb(4).

PREPARING FOR DEBUGGING
When debugging kernels, it is practically essential to have built a kernel with debugging symbols

(makeoptions DEBUG=-g). It is easiest to perform operations from the kernel build directory, by

default /usr/obj/usr/src/sys/GENERIC.

First, ensure you have a copy of the debug macros in the directory:

make gdbinit

This command performs some transformations on the macros installed in /usr/src/tools/debugscripts to

adapt them to the local environment.

Inspecting the environment of the local machine
To look at and change the contents of the memory of the system you are running on,

GDB(4) FreeBSD Kernel Interfaces Manual GDB(4)

FreeBSD 14.2-RELEASE May 17, 2016 FreeBSD 14.2-RELEASE

gdb -k -wcore kernel.debug /dev/mem

In this mode, you need the -k flag to indicate to gdb(1) (ports/devel/gdb) that the "dump file" /dev/mem

is a kernel data file. You can look at live data, and if you include the -wcore option, you can change it at

your peril. The system does not stop (obviously), so a number of things will not work. You can set

breakpoints, but you cannot "continue" execution, so they will not work.

Debugging a crash dump
By default, crash dumps are stored in the directory /var/crash. Investigate them from the kernel build

directory with:

gdb -k kernel.debug /var/crash/vmcore.29

In this mode, the system is obviously stopped, so you can only look at it.

Debugging a live system with a remote link
In the following discussion, the term "local system" refers to the system running the debugger, and

"remote system" refers to the live system being debugged.

To debug a live system with a remote link, the kernel must be compiled with the option options DDB.

The option options BREAK_TO_DEBUGGER enables the debugging machine stop the debugged

machine once a connection has been established by pressing ‘^C’.

Debugging a live system with a remote serial link
When using a serial port for the remote link on the i386 platform, the serial port must be identified by

setting the flag bit 0x80 for the specified interface. Generally, this port will also be used as a serial

console (flag bit 0x10), so the entry in /boot/device.hints should be:

hint.sio.0.flags="0x90"

Debugging a live system with a remote firewire link
As with serial debugging, to debug a live system with a firewire link, the kernel must be compiled with

the option options DDB.

A number of steps must be performed to set up a firewire link:

+o Ensure that both systems have firewire(4) support, and that the kernel of the remote system includes

the dcons(4) and dcons_crom(4) drivers. If they are not compiled into the kernel, load the KLDs:

kldload firewire

GDB(4) FreeBSD Kernel Interfaces Manual GDB(4)

FreeBSD 14.2-RELEASE May 17, 2016 FreeBSD 14.2-RELEASE

On the remote system only:

kldload dcons

kldload dcons_crom

You should see something like this in the dmesg(8) output of the remote system:

fwohci0: BUS reset

fwohci0: node_id=0x8800ffc0, gen=2, non CYCLEMASTER mode

firewire0: 2 nodes, maxhop <= 1, cable IRM = 1

firewire0: bus manager 1

firewire0: New S400 device ID:00c04f3226e88061

dcons_crom0: <dcons configuration ROM> on firewire0

dcons_crom0: bus_addr 0x22a000

It is a good idea to load these modules at boot time with the following entry in /boot/loader.conf:

dcons_crom_enable="YES"

This ensures that all three modules are loaded. There is no harm in loading dcons(4) and

dcons_crom(4) on the local system, but if you only want to load the firewire(4) module, include the

following in /boot/loader.conf:

firewire_enable="YES"

+o Next, use fwcontrol(8) to find the firewire node corresponding to the remote machine. On the local

machine you might see:

fwcontrol

2 devices (info_len=2)

node EUI64 status

1 0x00c04f3226e88061 0

0 0x000199000003622b 1

The first node is always the local system, so in this case, node 0 is the remote system. If there are

more than two systems, check from the other end to find which node corresponds to the remote

system. On the remote machine, it looks like this:

fwcontrol

2 devices (info_len=2)

GDB(4) FreeBSD Kernel Interfaces Manual GDB(4)

FreeBSD 14.2-RELEASE May 17, 2016 FreeBSD 14.2-RELEASE

node EUI64 status

0 0x000199000003622b 0

1 0x00c04f3226e88061 1

+o Next, establish a firewire connection with dconschat(8):

dconschat -br -G 5556 -t 0x000199000003622b

0x000199000003622b is the EUI64 address of the remote node, as determined from the output of

fwcontrol(8) above. When started in this manner, dconschat(8) establishes a local tunnel connection

from port localhost:5556 to the remote debugger. You can also establish a console port connection

with the -C option to the same invocation dconschat(8). See the dconschat(8) manpage for further

details.

The dconschat(8) utility does not return control to the user. It displays error messages and console

output for the remote system, so it is a good idea to start it in its own window.

+o Finally, establish connection:

gdb kernel.debug

GNU gdb 5.2.1 (FreeBSD)

(political statements omitted)

Ready to go. Enter ’tr’ to connect to the remote target

with /dev/cuau0, ’tr /dev/cuau1’ to connect to a different port

or ’trf portno’ to connect to the remote target with the firewire

interface. portno defaults to 5556.

Type ’getsyms’ after connection to load kld symbols.

If you are debugging a local system, you can use ’kldsyms’ instead

to load the kld symbols. That is a less obnoxious interface.

(gdb) trf

0xc21bd378 in ?? ()

The trf macro assumes a connection on port 5556. If you want to use a different port (by changing

the invocation of dconschat(8) above), use the tr macro instead. For example, if you want to use port

4711, run dconschat(8) like this:

dconschat -br -G 4711 -t 0x000199000003622b

GDB(4) FreeBSD Kernel Interfaces Manual GDB(4)

FreeBSD 14.2-RELEASE May 17, 2016 FreeBSD 14.2-RELEASE

Then establish connection with:

(gdb) tr localhost:4711

0xc21bd378 in ?? ()

Non-cooperative debugging a live system with a remote firewire link
In addition to the conventional debugging via firewire described in the previous section, it is possible to

debug a remote system without its cooperation, once an initial connection has been established. This

corresponds to debugging a local machine using /dev/mem. It can be very useful if a system crashes and

the debugger no longer responds. To use this method, set the sysctl(8) variables

hw.firewire.fwmem.eui64_hi and hw.firewire.fwmem.eui64_lo to the upper and lower halves of the

EUI64 ID of the remote system, respectively. From the previous example, the remote machine shows:

fwcontrol

2 devices (info_len=2)

node EUI64 status

0 0x000199000003622b 0

1 0x00c04f3226e88061 1

Enter:

sysctl -w hw.firewire.fwmem.eui64_hi=0x00019900

hw.firewire.fwmem.eui64_hi: 0 -> 104704

sysctl -w hw.firewire.fwmem.eui64_lo=0x0003622b

hw.firewire.fwmem.eui64_lo: 0 -> 221739

Note that the variables must be explicitly stated in hexadecimal. After this, you can examine the remote

machine’s state with the following input:

gdb -k kernel.debug /dev/fwmem0.0

GNU gdb 5.2.1 (FreeBSD)

(messages omitted)

Reading symbols from /boot/kernel/dcons.ko...done.

Loaded symbols for /boot/kernel/dcons.ko

Reading symbols from /boot/kernel/dcons_crom.ko...done.

Loaded symbols for /boot/kernel/dcons_crom.ko

#0 sched_switch (td=0xc0922fe0) at /usr/src/sys/kern/sched_4bsd.c:621

0xc21bd378 in ?? ()

In this case, it is not necessary to load the symbols explicitly. The remote system continues to run.

GDB(4) FreeBSD Kernel Interfaces Manual GDB(4)

FreeBSD 14.2-RELEASE May 17, 2016 FreeBSD 14.2-RELEASE

COMMANDS
The user interface to gdb is via gdb(1) (ports/devel/gdb), so gdb(1) (ports/devel/gdb) commands also

work. This section discusses only the extensions for kernel debugging that get installed in the kernel

build directory.

Debugging environment
The following macros manipulate the debugging environment:

ddb Switch back to ddb(4). This command is only meaningful when performing remote debugging.

getsyms
Display kldstat information for the target machine and invite user to paste it back in. This is

required because gdb does not allow data to be passed to shell scripts. It is necessary for remote

debugging and crash dumps; for local memory debugging use kldsyms instead.

kldsyms
Read in the symbol tables for the debugging machine. This does not work for remote debugging

and crash dumps; use getsyms instead.

tr interface

Debug a remote system via the specified serial or firewire interface.

tr0 Debug a remote system via serial interface /dev/cuau0.

tr1 Debug a remote system via serial interface /dev/cuau1.

trf Debug a remote system via firewire interface at default port 5556.

The commands tr0, tr1 and trf are convenience commands which invoke tr.

The current process environment
The following macros are convenience functions intended to make things easier than the standard gdb(1)

(ports/devel/gdb) commands.

f0 Select stack frame 0 and show assembler-level details.

f1 Select stack frame 1 and show assembler-level details.

f2 Select stack frame 2 and show assembler-level details.

GDB(4) FreeBSD Kernel Interfaces Manual GDB(4)

FreeBSD 14.2-RELEASE May 17, 2016 FreeBSD 14.2-RELEASE

f3 Select stack frame 3 and show assembler-level details.

f4 Select stack frame 4 and show assembler-level details.

f5 Select stack frame 5 and show assembler-level details.

xb Show 12 words in hex, starting at current ebp value.

xi List the next 10 instructions from the current eip value.

xp Show the register contents and the first four parameters of the current stack frame.

xp0 Show the first parameter of current stack frame in various formats.

xp1 Show the second parameter of current stack frame in various formats.

xp2 Show the third parameter of current stack frame in various formats.

xp3 Show the fourth parameter of current stack frame in various formats.

xp4 Show the fifth parameter of current stack frame in various formats.

xs Show the last 12 words on stack in hexadecimal.

xxp Show the register contents and the first ten parameters.

z Single step 1 instruction (over calls) and show next instruction.

zs Single step 1 instruction (through calls) and show next instruction.

Examining other processes
The following macros access other processes. The gdb debugger does not understand the concept of

multiple processes, so they effectively bypass the entire gdb environment.

btp pid

Show a backtrace for the process pid.

btpa Show backtraces for all processes in the system.

btpp Show a backtrace for the process previously selected with defproc.

GDB(4) FreeBSD Kernel Interfaces Manual GDB(4)

FreeBSD 14.2-RELEASE May 17, 2016 FreeBSD 14.2-RELEASE

btr ebp

Show a backtrace from the ebp address specified.

defproc pid

Specify the PID of the process for some other commands in this section.

fr frame

Show frame frame of the stack of the process previously selected with defproc.

pcb proc

Show some PCB contents of the process proc.

Examining data structures
You can use standard gdb(1) (ports/devel/gdb) commands to look at most data structures. The macros in

this section are convenience functions which typically display the data in a more readable format, or

which omit less interesting parts of the structure.

bp Show information about the buffer header pointed to by the variable bp in the current frame.

bpd Show the contents (char *) of bp->data in the current frame.

bpl Show detailed information about the buffer header (struct bp) pointed at by the local variable bp.

bpp bp

Show summary information about the buffer header (struct bp) pointed at by the parameter bp.

bx Print a number of fields from the buffer header pointed at in by the pointer bp in the current

environment.

vdev Show some information of the vnode pointed to by the local variable vp.

Miscellaneous macros
checkmem

Check unallocated memory for modifications. This assumes that the kernel has been compiled

with options DIAGNOSTIC. This causes the contents of free memory to be set to 0xdeadc0de.

dmesg
Print the system message buffer. This corresponds to the dmesg(8) utility. This macro used to

be called msgbuf. It can take a very long time over a serial line, and it is even slower via firewire

or local memory due to inefficiencies in gdb. When debugging a crash dump or over firewire, it

GDB(4) FreeBSD Kernel Interfaces Manual GDB(4)

FreeBSD 14.2-RELEASE May 17, 2016 FreeBSD 14.2-RELEASE

is not necessary to start gdb to access the message buffer: instead, use an appropriate variation of

dmesg -M /var/crash/vmcore.0 -N kernel.debug

dmesg -M /dev/fwmem0.0 -N kernel.debug

kldstat
Equivalent of the kldstat(8) utility without options.

pname
Print the command name of the current process.

ps Show process status. This corresponds in concept, but not in appearance, to the ps(1) utility.

When debugging a crash dump or over firewire, it is not necessary to start gdb to display the

ps(1) output: instead, use an appropriate variation of

ps -M /var/crash/vmcore.0 -N kernel.debug

ps -M /dev/fwmem0.0 -N kernel.debug

y Kludge for writing macros. When writing macros, it is convenient to paste them back into the

gdb window. Unfortunately, if the macro is already defined, gdb insists on asking

Redefine foo?

It will not give up until you answer ‘y’. This command is that answer. It does nothing else

except to print a warning message to remind you to remove it again.

SEE ALSO
gdb(1) (ports/devel/gdb), ps(1), ddb(4), firewire(4), dconschat(8), dmesg(8), fwcontrol(8), kldload(8)

AUTHORS
This man page was written by Greg Lehey <grog@FreeBSD.org>.

BUGS
The gdb(1) (ports/devel/gdb) debugger was never designed to debug kernels, and it is not a very good

match. Many problems exist.

The gdb implementation is very inefficient, and many operations are slow.

Serial debugging is even slower, and race conditions can make it difficult to run the link at more than

9600 bps. Firewire connections do not have this problem.

GDB(4) FreeBSD Kernel Interfaces Manual GDB(4)

FreeBSD 14.2-RELEASE May 17, 2016 FreeBSD 14.2-RELEASE

The debugging macros "just grew." In general, the person who wrote them did so while looking for a

specific problem, so they may not be general enough, and they may behave badly when used in ways for

which they were not intended, even if those ways make sense.

Many of these commands only work on the ia32 architecture.

GDB(4) FreeBSD Kernel Interfaces Manual GDB(4)

FreeBSD 14.2-RELEASE May 17, 2016 FreeBSD 14.2-RELEASE

