
NAME
getargs(), getlargs(), getvargs() - parse arguments until a non-flag is reached

SYNOPSIS
#include <schily/getargs.h>

int getargs(pac, pav, fmt, a1, ..., an)
int *pac; /* pointer to arg count */
char *(*pav)[]; /* pointer to address of arg vector */
char *fmt; /* format string */
type *a1; /* pointer to result 1 (corresponding */

/* to the first descriptor in fmt) */
type *an; /* pointer to result n (corresponding */

/* to the nth descriptor in fmt) */

int getlargs(pac, pav, props, fmt, a1, ..., an)

int *pac; /* pointer to arg count */
char *(*pav)[]; /* pointer to address of arg vector */
struct ga_props *props; /* control properties */
char *fmt; /* format string */
type *a1; /* pointer to result 1 (corresponding */

/* to the first descriptor in fmt) */
type *an; /* pointer to result n (corresponding */

/* to the nth descriptor in fmt) */

int getvargs(pac, pav, props, vfmt)
int *pac; /* pointer to arg count */
char *(*pav)[]; /* pointer to address of arg vector */
struct ga_props *props; /* control properties */
struct ga_flags *vfmt; /* array of formats and args */

DESCRIPTION
getargs() is part of the advanced option parsing interface together with the getallargs() and getfiles()

family.

getargs() looks at each argument that begins with ’-’, ’+’, or has an ’=’ in it and tries to find a matching

description in fmt. If a match is found, the corresponding value pointed to by a1 to an is set to the

value according to the conversion specification.

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

Joerg Schilling 2022/10/13 GETARGS(3)

If a match is not found, getargs() returns the error code -1 (BADFLAG), with *pav[0] pointing to the

bad argument. If an argument that does not begin with ’-’ or ’+’ or does not contain an ’=’ is found,

getargs() returns +1 (NOTAFLAG), again with pav[0] pointing to the non-flag argument. If the

argument "--" is found, getargs() returns +2 (FLAGDELIM) and pav[0] points to the argument after the

argument "--".

getlargs() is similar to getargs() but implements an additional ga_props parameter that must be

initialized with getarginit() before it is passed. Instead of using an explicit structure parameter, the

special parameter GA_NO_PROPS may be used to enforce default behavior and the special parameter

GA_POSIX_PROPS may be used to enforce POSIX compliant behavior.

getvargs() is similar to getlargs() but uses a structure ga_flags instead of a format string and a variable

argument list with pointers. The array of structures ga_flags:

struct ga_flags {
const char *ga_format; /* Comma separated list for one flag */
void *ga_arg; /* Ptr. to variable to fill for flag */
getpargfun ga_funcp; /* Ptr. for function to call (&/~) */

};

is terminated by an element with ga_format == NULL. For a ga_format that does not expect a function

pointer, ga_funcp is NULL.

With getargs(), each normal format takes one address argument from a1 to an and each function type

format takes two address arguments from a1 to an.

In the description, it is assumed that pac = &ac and pav = &av, where ac and av are the two arguments

passed to main(). The pointers are necessary so that getargs() can update ac and av as it verifies each

argument and reflects the current position back to the user.

The format string is a series of one or more option descriptors. Each option descriptor starts with the

option-name which is composed of characters, numbers, the underscore character ‘-’, minus or plus,

which must match the option parameter on the command line. The plus sign (+) must be escaped via \\
in the format string to distinguish it from the + format character. Each option-name is followed by the

optional format descriptor and an optional size modifier.

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

Joerg Schilling 2022/10/13 GETARGS(3)

Legal conversions and their meanings are:

Integer

The remainder of the current argument, or, if it is empty, the next existing argument is converted to

an int value. An error in conversion results in a BADFLAG situation.

+ Increment sized integer

The value of the related argument pointer is incremented, assuming a size that depends on the

optional size modifier after the +. See the integer conversions above for a list of valid size
modifiers.

empty

BOOLean TRUE

If the option-name is not followed by a format descriptor, the value of the related argument pointer

is interpreted as an integer and set to TRUE (+1).

%0 .. %9
Set sized integer to value in the range 0..9.

The value of the related argument pointer is either set to the single digit value that follows the %
character, assuming a size that depends on the optional size modifier after %0 .. %9. See the

integer conversions above for a list of valid size modifiers.

? Character

The next character in the current argument is the result. If there is no next char, the result is ’\0’.

* String

A pointer to the remainder of the current argument is returned in the related argument pointer. If

there are no more data in the argument the next argument is used, and if there is no next argument,

a BADFLAG situation is returned.

& Call function

This format takes two parameters in the argument list of getargs(). The first argument is a pointer

to a function to call. The second argument is a pointer to a variable that is passed to the function as

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

Joerg Schilling 2022/10/13 GETARGS(3)

second argument.

Because the argument just after the function address argument is passed as a second argument to

the function, common routines can have their results in different places depending on which switch

is invoked.

The function is called with five arguments:

1) A pointer to the option argument, taken from the matching element from the command line

from *pav.

2) A pointer to the variable that should be set by the function.

3) The current value of pac.

4) The current value of pav.

5) A pointer to the matching part of the format string.

The function must return one of these values:

FLAGDELIM = +2 Pretend that "--" stopped flag processing.

FLAGPARSED = +1 Option processing was successful.

NOARGS = 0 Pretend that all arguments have been examined.

BADFLAG = -1 The current flag argument or parameter is not understood.

BADFMT = -2 An unspecified error occurred.

NOTAFILE = -3 Probably another flag type argument. Tell the calling function (getargs()) to

continue to check for other flag type arguments in the format string for a

possible match.

Note: If a flag is found multiple times, the function is called each time.

~ Call function for BOOLean flag

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

Joerg Schilling 2022/10/13 GETARGS(3)

This is a variant of the &-format, but as a boolean flag is assumed, no option argument is assumed

and if the related option is a single char option, it may be combined with other single char options.

The called function may reset other options at the same time.

As boolean flags take no arguments, the first argument of the called function points to an empty

string.

The conversion types:

Integer conversion

+ Increment integer

%[0-9] Integer assignment

may have a size modifier:

c or C
The assignment is made to an character sized object.

s or S
The assignment is made to a short int sized object.

empty

i or I
The assignment is made to an int sized object.

l or L
The assignment is made to a long int sized object.

ll or LL
The assignment is made to a long long int sized object.

Flag (option) descriptors are separated by a ’,’ (without whitespace) in the format string. They

correspond in order to the resultant pointers, a1...an. Note that function type formats take two

arguments from resultant pointers, a1...an.

It is an error to expect more than one conversion from a single match (e.g., "x#*" to attempt to get both

the numerical value and the actual string for the x flag); a -2 (BADFMT) error will result if this is

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

Joerg Schilling 2022/10/13 GETARGS(3)

attempted.

Although flags must appear exactly as they do in the format string, the format string does not contain

the leading ’-’. If the flag should start with a ’+’, the ’+’ needs to be in the format string. If a long flag

should start with a ’--’, and a long flag with a single dash should not be permitted, a single ’-’ needs to

be in front of the flag name in the format string.

Flags, where conversion is to take place, may appear either as:

-fvalue

f=value

f= value

-f=value

-f= value

where f is the matching flag string. No additional effort is required to get these different ways of

specifying values.

Long flags, where conversion is to take place, may appear either as:

-flagvalue

--flagvalue

flag=value

flag= value

-flag=value

--flag=value

-flag= value

--flag= value

where flag is the matching flag string. All the above variants are accepted by the function.

For flags of type *, ?, & and #, when the format character is immediately followed by a space or

underscore character, the permitted option calling variants are limited:

- The underscore character enforces that option-name and option-argument need to be written as a

single argument. This allows implementing options with optional arguments.

- The space character enforces that option-name and option-argument need to be written as separate

arguments.

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

Joerg Schilling 2022/10/13 GETARGS(3)

RETURNS
FLAGDELIM 2 The command line argument "--" stopped flag processing.

NOTAFLAG 1 The argument *pav does not appear to be a flag.

NOARGS 0 All arguments have been successfully examined.

BADFLAG -1 A bad flag (option) argument was supplied to the program. The argument *pav
contains the offending command line argument.

BADFMT -2 A bad format descriptor string has been detected. This means an error in the calling

program, not a user input data error.

General rules for the return code:

> 0 A file type argument was found.

0 All arguments have been parsed.

< 0 An error occurred or not a file type argument.

Flag and file arg processing should be terminated after getting a return code <= 0.

SEE ALSO
getarginit(3), getallargs(3), getargerror(3), getfiles(3), getlallargs(3), getlargs(3), getlfiles(3),

getvallargs(3), getvargs(3), getvfiles(3).

NOTES
Users might find it surprising that given a format string like "foo*,bar*" and called with the command

line "foo= bar=baz" the getargs(3) family of functions will consider "bar=baz" as the argument to the

"foo=" flag. Pay special attention to this in shell scripts where e.g. "foo=$bar" will consume the next

argument if "$bar" is empty. To avoid this, write foo= "$bar" instead.

getargs() assumes the first argument is at av[0]. Commands are invoked by the system with the

command name in av[0] and the first argument in av[1], so they must increment av and decrement ac
before calling getargs().

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

Joerg Schilling 2022/10/13 GETARGS(3)

getargs() should only be used when the position of the switches influences how an argument is

processed, or when all switches must be before all file type arguments. In other cases, use getallargs().

BUGS
None currently known.

Mail bugs and suggestions to schilytools@mlists.in-berlin.de or open a ticket at

https://codeberg.org/schilytools/schilytools/issues.

The mailing list archive may be found at:

https://mlists.in-berlin.de/mailman/listinfo/schilytools-mlists.in-berlin.de.

AUTHOR
Joerg Schilling and the schilytools project authors.

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

Joerg Schilling 2022/10/13 GETARGS(3)

