GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

NAME
getargs(), getlargs(), getvargs() - parse arguments until a non-flag is reached

SYNOPSIS
#include <schily/getargs.h>

int getargs(pac, pav, fmt, ai, ..., an)

int *pac; [* pointer to arg count */

char *(*pav)[]; /* pointer to address of arg vector */

char *fmt; /* format string */

type*al,; /* pointer toresult 1 (corresponding */
/* tothefirst descriptor in fmt) */

type*an; [* pointer to result n (corresponding */
/* to the nth descriptor in fmt) */

int getlargs(pac, pav, props, fmt, al, ..., an)

int *pac; [* pointer to arg count */

char *(*pav)[]; /* pointer to address of arg vector */

struct ga_props *props, /* control properties*/

char *fmt; /* format string */

type*al,; [* pointer toresult 1 (corresponding */
/* tothefirst descriptor in fmt) */

type*an; [* pointer toresult n (corresponding */
[* to the nth descriptor in fmt) */

int getvar gs(pac, pav, props, vimt)
int *pac; [* pointer to arg count */
char *(*pav)[]; /* pointer to address of arg vector */
struct ga_props *props, /* control properties*/
struct ga_flags*vimt; /* array of formatsand args*/

DESCRIPTION
getargs() is part of the advanced option parsing interface together with the getallar gs() and getfiles()
family.

getargs() looks at each argument that beginswith’-", "+, or hasan’=" init and tries to find a matching

descriptionin fmt. If amatch isfound, the corresponding value pointed to by al to an is set to the
value according to the conversion specification.

Joerg Schilling 2022/10/13 GETARGS(3)

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

If amatch is not found, getar gs() returns the error code -1 (BADFLAG), with *pav[0] pointing to the
bad argument. If an argument that does not begin with’-" or '+ or does not contain an’'=" is found,
getargs() returns +1 (NOTAFLAG), again with pav[0] pointing to the non-flag argument. If the
argument "--" isfound, getar gs() returns +2 (FLAGDELIM) and pav[0] pointsto the argument after the

non

argument "--".

getlargs() is similar to getargs() but implements an additional ga_props parameter that must be
initialized with getar ginit() beforeit is passed. Instead of using an explicit structure parameter, the
specia parameter GA_NO_PROPS may be used to enforce default behavior and the special parameter
GA_POSIX_PROPS may be used to enforce POSI X compliant behavior.

getvargs() issimilar to getlar gs() but uses a structure ga_flagsinstead of aformat string and a variable
argument list with pointers. The array of structures ga flags:

struct ga_flags{

const char *ga format; /* Comma separated list for oneflag */
void *ga arg; /* Ptr.tovariabletofill for flag */
getpargfun ga funcp; /* Ptr. for functiontocall (&/~) */

I

isterminated by an element with ga_format == NULL. For aga _format that does not expect afunction
pointer, ga_funcp isNULL.

With getar gs(), each normal format takes one address argument from al to an and each function type
format takes two address arguments from al to an.

In the description, it is assumed that pac = & ac and pav = & av, where ac and av are the two arguments
passed to main(). The pointers are necessary so that getar gs() can update ac and av as it verifies each
argument and reflects the current position back to the user.

The format string is a series of one or more option descriptors. Each option descriptor starts with the
option-name which is composed of characters, numbers, the under score character ‘-’, minus or plus,
which must match the option parameter on the command line. The plus sign (+) must be escaped via\\
in the format string to distinguish it from the + format character. Each option-nameisfollowed by the
optional format descriptor and an optional size modifier.

Joerg Schilling 2022/10/13 GETARGS(3)

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

Legal conversions and their meanings are:
Integer

The remainder of the current argument, or, if it is empty, the next existing argument is converted to
anint value. An error in conversion resultsin aBADFL AG situation.

+ Increment sized integer
The value of the related argument pointer is incremented, assuming a size that depends on the
optional size modifier after the +. Seetheinteger conversions above for alist of valid size

modifiers.

empty
BOOL ean TRUE

If the option-name is not followed by aformat descriptor, the value of the related argument pointer
isinterpreted as an integer and set to TRUE (+1).

%0 .. %9
Set sized integer to valuein therange 0..9.

The value of the related argument pointer is either set to the single digit value that follows the %
character, assuming a size that depends on the optional size modifier after %0 .. %9. Seethe
integer conversions above for alist of valid size modifiers.

? Character
The next character in the current argument is the result. If thereis no next char, the result is’\0'.

* String
A pointer to the remainder of the current argument is returned in the related argument pointer. |If
there are no more data in the argument the next argument is used, and if there is no next argument,
aBADFLAG situation is returned.

& Call function

Thisformat takes two parametersin the argument list of getargs(). Thefirst argument is a pointer
to afunction to call. The second argument is a pointer to avariable that is passed to the function as

Joerg Schilling 2022/10/13 GETARGS(3)

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

second argument.

Because the argument just after the function address argument is passed as a second argument to
the function, common routines can have their results in different places depending on which switch
isinvoked.

The function is called with five arguments:

1) A pointer to the option argument, taken from the matching element from the command line
from *pav.

2) A pointer to the variable that should be set by the function.
3) The current value of pac.
4) The current vaue of pav.

5) A pointer to the matching part of the format string.

The function must return one of these values:

FLAGDELIM =+2 Pretend that "--" stopped flag processing.

FLAGPARSED = +1 Option processing was successful.

NOARGS=0 Pretend that all arguments have been examined.

BADFLAG =-1 The current flag argument or parameter is not understood.

BADFMT =-2 An unspecified error occurred.

NOTAFILE=-3 Probably another flag type argument. Tell the calling function (getar gs()) to
continue to check for other flag type argumentsin the format string for a
possible match.

Note: If aflag isfound multiple times, the function is called each time.

~ Call function for BOOL ean flag

Joerg Schilling 2022/10/13 GETARGS(3)

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

Thisisavariant of the & -format, but as a boolean flag is assumed, no option argument is assumed
and if the related option isasingle char option, it may be combined with other single char options.
The called function may reset other options at the same time.

As boolean flags take no arguments, the first argument of the called function points to an empty
string.

The conversion types:

Integer conversion
+ Increment integer
%[0-9] Integer assignment

may have a size modifier:

corC
The assignment is made to an character sized object.

sorS
The assignment is made to a short int sized object.

empty
iorl
The assignment is made to an int sized object.

lorL
The assignment is made to along int sized object.

lorLL
The assignment is made to along long int sized object.

Flag (option) descriptors are separated by a’,’ (without whitespace) in the format string. They
correspond in order to the resultant pointers, al...an. Note that function type formats take two
arguments from resultant pointers, al...an.

It isan error to expect more than one conversion from a single match (e.g., " x#*" to attempt to get both
the numerical value and the actual string for the x flag); a-2 (BADFMT) error will result if thisis

Joerg Schilling 2022/10/13 GETARGS(3)

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

attempted.

Although flags must appear exactly as they do in the format string, the format string does not contain
theleading’-'. If theflag should start with a’+’, the '+’ needs to bein the format string. If along flag
should start with a’--", and along flag with a single dash should not be permitted, asingle’-’ needsto
bein front of the flag name in the format string.

Flags, where conversion is to take place, may appear either as:

-fvalue
f=value
f=value
-f=value
-f=value

where f isthe matching flag string. No additional effort is required to get these different ways of
specifying values.

Long flags, where conversion is to take place, may appear either as:

-flagvalue
--flagvalue
flag=value
flag= value
-flag=value
--flag=value
-flag= value
--flag= value

where flag is the matching flag string. All the above variants are accepted by the function.
For flags of type*, ?, & and #, when the format character isimmediately followed by a space or
underscore character, the permitted option calling variants are limited:

- Theunderscore character enforces that option-name and option-ar gument need to be written asa
single argument. This allows implementing options with optional arguments.

- The space character enforces that option-name and option-ar gument need to be written as separate
arguments.

Joerg Schilling 2022/10/13 GETARGS(3)

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

RETURNS
FLAGDELIM 2 The command line argument "--" stopped flag processing.

NOTAFLAG 1 Theargument *pav does not appear to be aflag.
NOARGS 0 All arguments have been successfully examined.

BADFLAG -1 A bad flag (option) argument was supplied to the program. The argument * pav
contains the offending command line argument.

BADFMT -2 A bad format descriptor string has been detected. This means an error in the calling
program, not a user input data error.

General rulesfor the return code:

>0 A file type argument was found.
0 All arguments have been parsed.
<0 An error occurred or not afile type argument.

Flag and file arg processing should be terminated after getting a return code <= 0.

SEE ALSO
getar ginit(3), getallargs(3), getargerror(3), getfiles(3), getlallar gs(3), getlargs(3), getlfiles(3),
getvallargs(3), getvar gs(3), getvfiles(3).

NOTES
Users might find it surprising that given aformat string like "foo* ,bar*" and called with the command
line "foo= bar=baz' the getar gs(3) family of functions will consider "bar=baz" as the argument to the
"foo=" flag. Pay special attention to thisin shell scriptswhere e.g. "foo=$bar" will consume the next
argument if "$bar" is empty. To avoid this, write foo= "$bar" instead.

getar gs() assumes the first argument is at av[0]. Commands are invoked by the system with the

command name in av[0] and the first argument in av[1], so they must increment av and decrement ac
before calling getar gs().

Joerg Schilling 2022/10/13 GETARGS(3)

GETARGS(3) Schily’s LIBRARY FUNCTIONS GETARGS(3)

getargs() should only be used when the position of the switches influences how an argument is
processed, or when all switches must be before al file type arguments. In other cases, use getallar gs().

BUGS
None currently known.

Mail bugs and suggestions to schilytools@mlists.in-berlin.de or open aticket at
https://codeber g.or g/schilytool s/schilytool s/issues.

The mailing list archive may be found at:

https://mlists.in-ber lin.de/mailman/listinfo/schilytools-mlists.in-berlin.de.

AUTHOR
Joerg Schilling and the schilytools project authors.

Joerg Schilling 2022/10/13 GETARGS(3)

