
NAME
getopt_long, getopt_long_only - get long options from command line argument list

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <getopt.h>

extern char *optarg;

extern int optind;

extern int optopt;

extern int opterr;

extern int optreset;

int

getopt_long(int argc, char * const *argv, const char *optstring, const struct option *longopts,

int *longindex);

int

getopt_long_only(int argc, char * const *argv, const char *optstring, const struct option *longopts,

int *longindex);

DESCRIPTION
The getopt_long() function is similar to getopt(3) but it accepts options in two forms: words and

characters. The getopt_long() function provides a superset of the functionality of getopt(3). The

getopt_long() function can be used in two ways. In the first way, every long option understood by the

program has a corresponding short option, and the option structure is only used to translate from long

options to short options. When used in this fashion, getopt_long() behaves identically to getopt(3). This

is a good way to add long option processing to an existing program with the minimum of rewriting.

In the second mechanism, a long option sets a flag in the option structure passed, or will store a pointer

to the command line argument in the option structure passed to it for options that take arguments.

Additionally, the long option’s argument may be specified as a single argument with an equal sign, e.g.,

myprogram --myoption=somevalue

When a long option is processed, the call to getopt_long() will return 0. For this reason, long option

processing without shortcuts is not backwards compatible with getopt(3).

GETOPT_LONG(3) FreeBSD Library Functions Manual GETOPT_LONG(3)

FreeBSD 14.0-RELEASE-p6 December 24, 2022 FreeBSD 14.0-RELEASE-p6



It is possible to combine these methods, providing for long options processing with short option

equivalents for some options. Less frequently used options would be processed as long options only.

The getopt_long() call requires a structure to be initialized describing the long options. The structure is:

struct option {

char *name;

int has_arg;

int *flag;

int val;

};

The name field should contain the option name without the leading double dash.

The has_arg field should be one of:

no_argument no argument to the option is expected

required_argument

an argument to the option is required

optional_argument an argument to the option may be presented

If flag is not NULL, then the integer pointed to by it will be set to the value in the val field. If the flag

field is NULL, then the val field will be returned. Setting flag to NULL and setting val to the

corresponding short option will make this function act just like getopt(3).

If the longindex field is not NULL, then the integer pointed to by it will be set to the index of the long

option relative to longopts.

The last element of the longopts array has to be filled with zeroes.

The getopt_long_only() function behaves identically to getopt_long() with the exception that long

options may start with ‘-’ in addition to ‘--’. If an option starting with ‘-’ does not match a long option

but does match a single-character option, the single-character option is returned.

RETURN VALUES
If the flag field in struct option is NULL, getopt_long() and getopt_long_only() return the value

specified in the val field, which is usually just the corresponding short option. If flag is not NULL, these

functions return 0 and store val in the location pointed to by flag.

These functions return ‘:’ if there was a missing option argument and error messages are suppressed, ‘?’

GETOPT_LONG(3) FreeBSD Library Functions Manual GETOPT_LONG(3)

FreeBSD 14.0-RELEASE-p6 December 24, 2022 FreeBSD 14.0-RELEASE-p6



if the user specified an unknown or ambiguous option, and -1 when the argument list has been

exhausted. The default behavior when a missing option argument is encountered is to write an error and

return ‘?’. Specifying ‘:’ in optstr will cause the error message to be suppressed and ‘:’ to be returned

instead.

In addition to ‘:’, a leading ‘+’ or ‘-’ in optstr also has special meaning. If either of these are specified,

they must appear before ‘:’.

A leading ‘+’ indicates that processing should be halted at the first non-option argument, matching the

default behavior of getopt(3). The default behavior without ‘+’ is to permute non-option arguments to

the end of argv.

A leading ‘-’ indicates that all non-option arguments should be treated as if they are arguments to a

literal ‘1’ flag (i.e., the function call will return the value 1, rather than the char literal ’1’).

ENVIRONMENT
POSIXLY_CORRECT If set, option processing stops when the first non-option is found and a leading

‘-’ or ‘+’ in the optstring is ignored.

EXAMPLES
int bflag, ch, fd;

int daggerset;

/* options descriptor */

static struct option longopts[] = {

{ "buffy",no_argument, NULL, ’b’ },

{ "fluoride", required_argument, NULL, ’f’ },

{ "daggerset", no_argument, &daggerset, 1 },

{ NULL, 0, NULL, 0 }

};

bflag = 0;

while ((ch = getopt_long(argc, argv, "bf:", longopts, NULL)) != -1) {

switch (ch) {

case ’b’:

bflag = 1;

break;

case ’f’:

if ((fd = open(optarg, O_RDONLY, 0)) == -1)

err(1, "unable to open %s", optarg);

GETOPT_LONG(3) FreeBSD Library Functions Manual GETOPT_LONG(3)

FreeBSD 14.0-RELEASE-p6 December 24, 2022 FreeBSD 14.0-RELEASE-p6



break;

case 0:

if (daggerset) {

fprintf(stderr,"Buffy will use her dagger to "

"apply fluoride to dracula’s teeth\n");

}

break;

default:

usage();

}

}

argc -= optind;

argv += optind;

IMPLEMENTATION DIFFERENCES
This section describes differences to the GNU implementation found in glibc-2.1.3:

+o Setting of optopt for long options with flag != NULL:

GNU

sets optopt to val.

BSD

sets optopt to 0 (since val would never be returned).

+o Setting of optarg for long options without an argument that are invoked via ‘-W’ (‘W;’ in option

string):

GNU

sets optarg to the option name (the argument of ‘-W’).

BSD

sets optarg to NULL (the argument of the long option).

+o Handling of ‘-W’ with an argument that is not (a prefix to) a known long option (‘W;’ in option

string):

GNU

returns ‘-W’ with optarg set to the unknown option.

GETOPT_LONG(3) FreeBSD Library Functions Manual GETOPT_LONG(3)

FreeBSD 14.0-RELEASE-p6 December 24, 2022 FreeBSD 14.0-RELEASE-p6



BSD

treats this as an error (unknown option) and returns ‘?’ with optopt set to 0 and optarg set to

NULL (as GNU’s man page documents).

+o BSD does not permute the argument vector at the same points in the calling sequence as GNU does.

The aspects normally used by the caller (ordering after -1 is returned, value of optind relative to

current positions) are the same, though. (We do fewer variable swaps.)

SEE ALSO
getopt(3)

HISTORY
The getopt_long() and getopt_long_only() functions first appeared in the GNU libiberty library. The

first BSD implementation of getopt_long() appeared in NetBSD 1.5, the first BSD implementation of

getopt_long_only() in OpenBSD 3.3. FreeBSD first included getopt_long() in FreeBSD 5.0,

getopt_long_only() in FreeBSD 5.2.

BUGS
The argv argument is not really const as its elements may be permuted (unless POSIXLY_CORRECT is

set).

The implementation can completely replace getopt(3), but right now we are using separate code.

getopt_long makes the assumption that the first argument should always be skipped because it’s

typically the program name. As a result, setting optind to 0 will indicate that getopt_long should reset,

and optind will be set to 1 in the process. This behavior differs from getopt(3), which will handle an

optind value of 0 as expected and process the first element.

GETOPT_LONG(3) FreeBSD Library Functions Manual GETOPT_LONG(3)

FreeBSD 14.0-RELEASE-p6 December 24, 2022 FreeBSD 14.0-RELEASE-p6


