
NAME
getfiles() - gets next non flag-type argument

SYNOPSIS
#include <schily/getargs.h>

int getfiles(pac, pav, fmt)
int *pac; /* pointer to arg count */
char *(*pav)[]; /* pointer to address of arg vector */
char *fmt; /* format string */

int getlfiles(pac, pav, props, fmt)

int *pac; /* pointer to arg count */
char *(*pav)[]; /* pointer to address of arg vector */
struct ga_props *props; /* control properties */
char *fmt; /* format string */

int getvfiles(pac, pav, props, vfmt)
int *pac; /* pointer to arg count */
char *(*pav)[]; /* pointer to address of arg vector */
struct ga_props *props; /* control properties */
struct ga_flags *vfmt; /* array of formats and args */

DESCRIPTION
getfiles() is part of the advanced option parsing interface together with the getargs() and getallrgs()

family. getfiles() skips options until a file type argument is encountered.

getfiles() returns, with a value of +1 (NOTAFLAG) or +2 (FLAGDELIM), whenever a non-flag type

argument is encountered. Flag-type (option) arguments, along with their values, are ignored. The

filename is at *pav[0]. The caller must increment *pav and decrement *pac before calling getfiles()

again.

getlfiles() is similar to getfiles() but it implements an additional ga_props parameter that must be

initialized with getarginit() before it is passed.

getvfiles() is similar to getlfiles() but uses a structure ga_flags instead of a format string and a variable

arg list with pointers. The array of structures ga_flags:

struct ga_flags {
const char *ga_format; /* Comma separated list for one flag */

GETFILES(3) Schily’s LIBRARY FUNCTIONS GETFILES(3)

Joerg Schilling 2022/09/09 GETFILES(3)



void *ga_arg; /* Ptr. to variable to fill for flag */
getpargfun ga_funcp; /* Ptr. for function to call (&/~) */

};

is terminated by an element with ga_format == NULL. For a ga_format that does not expect a function

pointer, ga_funcp is NULL.

RETURNS
FLAGDELIM 2 The command line argument "--" stopped flag processing.

NOTAFLAG 1 The argument *pav does not appear to be a flag.

NOARGS 0 All arguments have been successfully examined.

BADFLAG -1 A bad flag (option) argument was supplied to the program. The argument *pav
contains the offending command line argument.

BADFMT -2 A bad format descriptor string has been detected. This means an error in the calling

program, not a user input data error.

General rules for the return code:

> 0 A file type argument was found.

0 All arguments have been parsed.

< 0 An error occurred or not a file type argument.

Flag and file arg processing should be terminated after getting a return code <= 0.

SEE ALSO
getallargs(3), getargerror(3), getargs(3).

NOTES
Initially, *pav must point to the first argument (not the program name) and *pac must not count the

program name. Before calling getfiles() again, decrement *pac and increment *pav, or the same name

will be pointed to by *pav.

GETFILES(3) Schily’s LIBRARY FUNCTIONS GETFILES(3)

Joerg Schilling 2022/09/09 GETFILES(3)



BUGS
None currently known.

Mail bugs and suggestions to schilytools@mlists.in-berlin.de or open a ticket at

https://codeberg.org/schilytools/schilytools/issues.

The mailing list archive may be found at:

https://mlists.in-berlin.de/mailman/listinfo/schilytools-mlists.in-berlin.de.

AUTHOR
Joerg Schilling and the schilytools project authors.

GETFILES(3) Schily’s LIBRARY FUNCTIONS GETFILES(3)

Joerg Schilling 2022/09/09 GETFILES(3)


