
NAME
git-add - Add file contents to the index

SYNOPSIS
git add [--verbose | -v] [--dry-run | -n] [--force | -f] [--interactive | -i] [--patch | -p]

[--edit | -e] [--[no-]all | --[no-]ignore-removal | [--update | -u]] [--sparse]

[--intent-to-add | -N] [--refresh] [--ignore-errors] [--ignore-missing] [--renormalize]

[--chmod=(+|-)x] [--pathspec-from-file=<file> [--pathspec-file-nul]]

[--] [<pathspec>...]

DESCRIPTION
This command updates the index using the current content found in the working tree, to prepare the

content staged for the next commit. It typically adds the current content of existing paths as a whole,

but with some options it can also be used to add content with only part of the changes made to the

working tree files applied, or remove paths that do not exist in the working tree anymore.

The "index" holds a snapshot of the content of the working tree, and it is this snapshot that is taken as

the contents of the next commit. Thus after making any changes to the working tree, and before

running the commit command, you must use the add command to add any new or modified files to the

index.

This command can be performed multiple times before a commit. It only adds the content of the

specified file(s) at the time the add command is run; if you want subsequent changes included in the

next commit, then you must run git add again to add the new content to the index.

The git status command can be used to obtain a summary of which files have changes that are staged

for the next commit.

The git add command will not add ignored files by default. If any ignored files were explicitly

specified on the command line, git add will fail with a list of ignored files. Ignored files reached by

directory recursion or filename globbing performed by Git (quote your globs before the shell) will be

silently ignored. The git add command can be used to add ignored files with the -f (force) option.

Please see git-commit(1) for alternative ways to add content to a commit.

OPTIONS
<pathspec>...

Files to add content from. Fileglobs (e.g. *.c) can be given to add all matching files. Also a

leading directory name (e.g. dir to add dir/file1 and dir/file2) can be given to update the index to

GIT-ADD(1) Git Manual GIT-ADD(1)

Git 2.42.0 2023-08-21 GIT-ADD(1)

match the current state of the directory as a whole (e.g. specifying dir will record not just a file

dir/file1 modified in the working tree, a file dir/file2 added to the working tree, but also a file

dir/file3 removed from the working tree). Note that older versions of Git used to ignore removed

files; use --no-all option if you want to add modified or new files but ignore removed ones.

For more details about the <pathspec> syntax, see the pathspec entry in gitglossary(7).

-n, --dry-run

Don’t actually add the file(s), just show if they exist and/or will be ignored.

-v, --verbose

Be verbose.

-f, --force

Allow adding otherwise ignored files.

--sparse

Allow updating index entries outside of the sparse-checkout cone. Normally, git add refuses to

update index entries whose paths do not fit within the sparse-checkout cone, since those files

might be removed from the working tree without warning. See git-sparse-checkout(1) for more

details.

-i, --interactive

Add modified contents in the working tree interactively to the index. Optional path arguments

may be supplied to limit operation to a subset of the working tree. See "Interactive mode" for

details.

-p, --patch

Interactively choose hunks of patch between the index and the work tree and add them to the

index. This gives the user a chance to review the difference before adding modified contents to the

index.

This effectively runs add --interactive, but bypasses the initial command menu and directly jumps

to the patch subcommand. See "Interactive mode" for details.

-e, --edit

Open the diff vs. the index in an editor and let the user edit it. After the editor was closed, adjust

the hunk headers and apply the patch to the index.

The intent of this option is to pick and choose lines of the patch to apply, or even to modify the

GIT-ADD(1) Git Manual GIT-ADD(1)

Git 2.42.0 2023-08-21 GIT-ADD(1)

contents of lines to be staged. This can be quicker and more flexible than using the interactive

hunk selector. However, it is easy to confuse oneself and create a patch that does not apply to the

index. See EDITING PATCHES below.

-u, --update

Update the index just where it already has an entry matching <pathspec>. This removes as well as

modifies index entries to match the working tree, but adds no new files.

If no <pathspec> is given when -u option is used, all tracked files in the entire working tree are

updated (old versions of Git used to limit the update to the current directory and its

subdirectories).

-A, --all, --no-ignore-removal

Update the index not only where the working tree has a file matching <pathspec> but also where

the index already has an entry. This adds, modifies, and removes index entries to match the

working tree.

If no <pathspec> is given when -A option is used, all files in the entire working tree are updated

(old versions of Git used to limit the update to the current directory and its subdirectories).

--no-all, --ignore-removal

Update the index by adding new files that are unknown to the index and files modified in the

working tree, but ignore files that have been removed from the working tree. This option is a

no-op when no <pathspec> is used.

This option is primarily to help users who are used to older versions of Git, whose "git add

<pathspec>..." was a synonym for "git add --no-all <pathspec>...", i.e. ignored removed files.

-N, --intent-to-add

Record only the fact that the path will be added later. An entry for the path is placed in the index

with no content. This is useful for, among other things, showing the unstaged content of such files

with git diff and committing them with git commit -a.

--refresh

Don’t add the file(s), but only refresh their stat() information in the index.

--ignore-errors

If some files could not be added because of errors indexing them, do not abort the operation, but

continue adding the others. The command shall still exit with non-zero status. The configuration

variable add.ignoreErrors can be set to true to make this the default behaviour.

GIT-ADD(1) Git Manual GIT-ADD(1)

Git 2.42.0 2023-08-21 GIT-ADD(1)

--ignore-missing

This option can only be used together with --dry-run. By using this option the user can check if

any of the given files would be ignored, no matter if they are already present in the work tree or

not.

--no-warn-embedded-repo

By default, git add will warn when adding an embedded repository to the index without using git
submodule add to create an entry in .gitmodules. This option will suppress the warning (e.g., if

you are manually performing operations on submodules).

--renormalize

Apply the "clean" process freshly to all tracked files to forcibly add them again to the index. This

is useful after changing core.autocrlf configuration or the text attribute in order to correct files

added with wrong CRLF/LF line endings. This option implies -u. Lone CR characters are

untouched, thus while a CRLF cleans to LF, a CRCRLF sequence is only partially cleaned to

CRLF.

--chmod=(+|-)x

Override the executable bit of the added files. The executable bit is only changed in the index, the

files on disk are left unchanged.

--pathspec-from-file=<file>

Pathspec is passed in <file> instead of commandline args. If <file> is exactly - then standard input

is used. Pathspec elements are separated by LF or CR/LF. Pathspec elements can be quoted as

explained for the configuration variable core.quotePath (see git-config(1)). See also

--pathspec-file-nul and global --literal-pathspecs.

--pathspec-file-nul

Only meaningful with --pathspec-from-file. Pathspec elements are separated with NUL character

and all other characters are taken literally (including newlines and quotes).

--

This option can be used to separate command-line options from the list of files, (useful when

filenames might be mistaken for command-line options).

EXAMPLES
+o

content from all *.txt files under Documentation directory and its subdirectories:

$ git add Documentation/*.txt

GIT-ADD(1) Git Manual GIT-ADD(1)

Git 2.42.0 2023-08-21 GIT-ADD(1)

Note that the asterisk * is quoted from the shell in this example; this lets the command include the

files from subdirectories of Documentation/ directory.

+o

adding content from all git-*.sh scripts:

$ git add git-*.sh

Because this example lets the shell expand the asterisk (i.e. you are listing the files explicitly), it

does not consider subdir/git-foo.sh.

INTERACTIVE MODE
When the command enters the interactive mode, it shows the output of the status subcommand, and

then goes into its interactive command loop.

The command loop shows the list of subcommands available, and gives a prompt "What now> ". In

general, when the prompt ends with a single >, you can pick only one of the choices given and type

return, like this:

*** Commands ***

1: status 2: update 3: revert 4: add untracked

5: patch 6: diff 7: quit 8: help

What now> 1

You also could say s or sta or status above as long as the choice is unique.

The main command loop has 6 subcommands (plus help and quit).

status

This shows the change between HEAD and index (i.e. what will be committed if you say git
commit), and between index and working tree files (i.e. what you could stage further before git
commit using git add) for each path. A sample output looks like this:

staged unstaged path

1: binary nothing foo.png

2: +403/-35 +1/-1 add-interactive.c

It shows that foo.png has differences from HEAD (but that is binary so line count cannot be

shown) and there is no difference between indexed copy and the working tree version (if the

GIT-ADD(1) Git Manual GIT-ADD(1)

Git 2.42.0 2023-08-21 GIT-ADD(1)

working tree version were also different, binary would have been shown in place of

nothing). The other file, add-interactive.c, has 403 lines added and 35 lines deleted if you

commit what is in the index, but working tree file has further modifications (one addition

and one deletion).

update

This shows the status information and issues an "Update>>" prompt. When the prompt ends with

double >>, you can make more than one selection, concatenated with whitespace or comma. Also

you can say ranges. E.g. "2-5 7,9" to choose 2,3,4,5,7,9 from the list. If the second number in a

range is omitted, all remaining patches are taken. E.g. "7-" to choose 7,8,9 from the list. You can

say * to choose everything.

What you chose are then highlighted with *, like this:

staged unstaged path

1: binary nothing foo.png

* 2: +403/-35 +1/-1 add-interactive.c

To remove selection, prefix the input with - like this:

Update>> -2

After making the selection, answer with an empty line to stage the contents of working tree files

for selected paths in the index.

revert

This has a very similar UI to update, and the staged information for selected paths are reverted to

that of the HEAD version. Reverting new paths makes them untracked.

add untracked

This has a very similar UI to update and revert, and lets you add untracked paths to the index.

patch

This lets you choose one path out of a status like selection. After choosing the path, it presents the

diff between the index and the working tree file and asks you if you want to stage the change of

each hunk. You can select one of the following options and type return:

y - stage this hunk

n - do not stage this hunk

q - quit; do not stage this hunk or any of the remaining ones

GIT-ADD(1) Git Manual GIT-ADD(1)

Git 2.42.0 2023-08-21 GIT-ADD(1)

a - stage this hunk and all later hunks in the file

d - do not stage this hunk or any of the later hunks in the file

g - select a hunk to go to

/ - search for a hunk matching the given regex

j - leave this hunk undecided, see next undecided hunk

J - leave this hunk undecided, see next hunk

k - leave this hunk undecided, see previous undecided hunk

K - leave this hunk undecided, see previous hunk

s - split the current hunk into smaller hunks

e - manually edit the current hunk

? - print help

After deciding the fate for all hunks, if there is any hunk that was chosen, the index is updated

with the selected hunks.

You can omit having to type return here, by setting the configuration variable

interactive.singleKey to true.

diff

This lets you review what will be committed (i.e. between HEAD and index).

EDITING PATCHES
Invoking git add -e or selecting e from the interactive hunk selector will open a patch in your editor;

after the editor exits, the result is applied to the index. You are free to make arbitrary changes to the

patch, but note that some changes may have confusing results, or even result in a patch that cannot be

applied. If you want to abort the operation entirely (i.e., stage nothing new in the index), simply delete

all lines of the patch. The list below describes some common things you may see in a patch, and which

editing operations make sense on them.

added content

Added content is represented by lines beginning with "+". You can prevent staging any addition

lines by deleting them.

removed content

Removed content is represented by lines beginning with "-". You can prevent staging their

removal by converting the "-" to a " " (space).

modified content

Modified content is represented by "-" lines (removing the old content) followed by "+" lines

(adding the replacement content). You can prevent staging the modification by converting "-"

GIT-ADD(1) Git Manual GIT-ADD(1)

Git 2.42.0 2023-08-21 GIT-ADD(1)

lines to " ", and removing "+" lines. Beware that modifying only half of the pair is likely to

introduce confusing changes to the index.

There are also more complex operations that can be performed. But beware that because the patch is

applied only to the index and not the working tree, the working tree will appear to "undo" the change in

the index. For example, introducing a new line into the index that is in neither the HEAD nor the

working tree will stage the new line for commit, but the line will appear to be reverted in the working

tree.

Avoid using these constructs, or do so with extreme caution.

removing untouched content

Content which does not differ between the index and working tree may be shown on context lines,

beginning with a " " (space). You can stage context lines for removal by converting the space to a

"-". The resulting working tree file will appear to re-add the content.

modifying existing content

One can also modify context lines by staging them for removal (by converting " " to "-") and

adding a "+" line with the new content. Similarly, one can modify "+" lines for existing additions

or modifications. In all cases, the new modification will appear reverted in the working tree.

new content

You may also add new content that does not exist in the patch; simply add new lines, each starting

with "+". The addition will appear reverted in the working tree.

There are also several operations which should be avoided entirely, as they will make the patch

impossible to apply:

+o

context (" ") or removal ("-") lines

+o

context or removal lines

+o

the contents of context or removal lines

CONFIGURATION
Everything below this line in this section is selectively included from the git-config(1) documentation.

The content is the same as what’s found there:

GIT-ADD(1) Git Manual GIT-ADD(1)

Git 2.42.0 2023-08-21 GIT-ADD(1)

add.ignoreErrors, add.ignore-errors (deprecated)

Tells git add to continue adding files when some files cannot be added due to indexing errors.

Equivalent to the --ignore-errors option of git-add(1). add.ignore-errors is deprecated, as it does

not follow the usual naming convention for configuration variables.

add.interactive.useBuiltin

Unused configuration variable. Used in Git versions v2.25.0 to v2.36.0 to enable the built-in

version of git-add(1)’s interactive mode, which then became the default in Git versions v2.37.0 to

v2.39.0.

SEE ALSO
git-status(1) git-rm(1) git-reset(1) git-mv(1) git-commit(1) git-update-index(1)

GIT
Part of the git(1) suite

GIT-ADD(1) Git Manual GIT-ADD(1)

Git 2.42.0 2023-08-21 GIT-ADD(1)

