
NAME
git-annotate - Annotate file lines with commit information

SYNOPSIS
git annotate [<options>] [<rev-opts>] [<rev>] [--] <file>

DESCRIPTION
Annotates each line in the given file with information from the commit which introduced the line.

Optionally annotates from a given revision.

The only difference between this command and git-blame(1) is that they use slightly different output

formats, and this command exists only for backward compatibility to support existing scripts, and

provide a more familiar command name for people coming from other SCM systems.

OPTIONS
-b

Show blank SHA-1 for boundary commits. This can also be controlled via the

blame.blankBoundary config option.

--root

Do not treat root commits as boundaries. This can also be controlled via the blame.showRoot
config option.

--show-stats

Include additional statistics at the end of blame output.

-L <start>,<end>, -L :<funcname>

Annotate only the line range given by <start>,<end>, or by the function name regex <funcname>.

May be specified multiple times. Overlapping ranges are allowed.

<start> and <end> are optional. -L <start> or -L <start>, spans from <start> to end of file. -L
,<end> spans from start of file to <end>.

<start> and <end> can take one of these forms:

+o

If <start> or <end> is a number, it specifies an absolute line number (lines count from 1).

GIT-ANNOTATE(1) Git Manual GIT-ANNOTATE(1)

Git 2.42.0 2023-08-21 GIT-ANNOTATE(1)



+o

This form will use the first line matching the given POSIX regex. If <start> is a regex, it will search

from the end of the previous -L range, if any, otherwise from the start of file. If <start> is ^/regex/, it

will search from the start of file. If <end> is a regex, it will search starting at the line given by

<start>.

+o

or -offset

This is only valid for <end> and will specify a number of lines before or after the line given by

<start>.

If :<funcname> is given in place of <start> and <end>, it is a regular expression that denotes the

range from the first funcname line that matches <funcname>, up to the next funcname line.

:<funcname> searches from the end of the previous -L range, if any, otherwise from the start of

file. ^:<funcname> searches from the start of file. The function names are determined in the same

way as git diff works out patch hunk headers (see Defining a custom hunk-header in

gitattributes(5)).

-l

Show long rev (Default: off).

-t

Show raw timestamp (Default: off).

-S <revs-file>

Use revisions from revs-file instead of calling git-rev-list(1).

--reverse <rev>..<rev>

Walk history forward instead of backward. Instead of showing the revision in which a line

appeared, this shows the last revision in which a line has existed. This requires a range of revision

like START..END where the path to blame exists in START. git blame --reverse START is taken

as git blame --reverse START..HEAD for convenience.

--first-parent

Follow only the first parent commit upon seeing a merge commit. This option can be used to

determine when a line was introduced to a particular integration branch, rather than when it was

introduced to the history overall.

GIT-ANNOTATE(1) Git Manual GIT-ANNOTATE(1)

Git 2.42.0 2023-08-21 GIT-ANNOTATE(1)



-p, --porcelain

Show in a format designed for machine consumption.

--line-porcelain

Show the porcelain format, but output commit information for each line, not just the first time a

commit is referenced. Implies --porcelain.

--incremental

Show the result incrementally in a format designed for machine consumption.

--encoding=<encoding>

Specifies the encoding used to output author names and commit summaries. Setting it to none
makes blame output unconverted data. For more information see the discussion about encoding in

the git-log(1) manual page.

--contents <file>

Annotate using the contents from the named file, starting from <rev> if it is specified, and HEAD

otherwise. You may specify - to make the command read from the standard input for the file

contents.

--date <format>

Specifies the format used to output dates. If --date is not provided, the value of the blame.date

config variable is used. If the blame.date config variable is also not set, the iso format is used. For

supported values, see the discussion of the --date option at git-log(1).

--[no-]progress

Progress status is reported on the standard error stream by default when it is attached to a terminal.

This flag enables progress reporting even if not attached to a terminal. Can’t use --progress
together with --porcelain or --incremental.

-M[<num>]

Detect moved or copied lines within a file. When a commit moves or copies a block of lines (e.g.

the original file has A and then B, and the commit changes it to B and then A), the traditional

blame algorithm notices only half of the movement and typically blames the lines that were

moved up (i.e. B) to the parent and assigns blame to the lines that were moved down (i.e. A) to the

child commit. With this option, both groups of lines are blamed on the parent by running extra

passes of inspection.

<num> is optional but it is the lower bound on the number of alphanumeric characters that Git

must detect as moving/copying within a file for it to associate those lines with the parent commit.

GIT-ANNOTATE(1) Git Manual GIT-ANNOTATE(1)

Git 2.42.0 2023-08-21 GIT-ANNOTATE(1)



The default value is 20.

-C[<num>]

In addition to -M, detect lines moved or copied from other files that were modified in the same

commit. This is useful when you reorganize your program and move code around across files.

When this option is given twice, the command additionally looks for copies from other files in the

commit that creates the file. When this option is given three times, the command additionally

looks for copies from other files in any commit.

<num> is optional but it is the lower bound on the number of alphanumeric characters that Git

must detect as moving/copying between files for it to associate those lines with the parent commit.

And the default value is 40. If there are more than one -C options given, the <num> argument of

the last -C will take effect.

--ignore-rev <rev>

Ignore changes made by the revision when assigning blame, as if the change never happened.

Lines that were changed or added by an ignored commit will be blamed on the previous commit

that changed that line or nearby lines. This option may be specified multiple times to ignore more

than one revision. If the blame.markIgnoredLines config option is set, then lines that were

changed by an ignored commit and attributed to another commit will be marked with a ? in the

blame output. If the blame.markUnblamableLines config option is set, then those lines touched by

an ignored commit that we could not attribute to another revision are marked with a *.

--ignore-revs-file <file>

Ignore revisions listed in file, which must be in the same format as an fsck.skipList. This option

may be repeated, and these files will be processed after any files specified with the

blame.ignoreRevsFile config option. An empty file name, "", will clear the list of revs from

previously processed files.

--color-lines

Color line annotations in the default format differently if they come from the same commit as the

preceding line. This makes it easier to distinguish code blocks introduced by different commits.

The color defaults to cyan and can be adjusted using the color.blame.repeatedLines config option.

--color-by-age

Color line annotations depending on the age of the line in the default format. The

color.blame.highlightRecent config option controls what color is used for each range of age.

-h

Show help message.

GIT-ANNOTATE(1) Git Manual GIT-ANNOTATE(1)

Git 2.42.0 2023-08-21 GIT-ANNOTATE(1)



SEE ALSO
git-blame(1)

GIT
Part of the git(1) suite

GIT-ANNOTATE(1) Git Manual GIT-ANNOTATE(1)

Git 2.42.0 2023-08-21 GIT-ANNOTATE(1)


