
NAME
git-archive - Create an archive of files from a named tree

SYNOPSIS
git archive [--format=<fmt>] [--list] [--prefix=<prefix>/] [<extra>]

[-o <file> | --output=<file>] [--worktree-attributes]

[--remote=<repo> [--exec=<git-upload-archive>]] <tree-ish>

[<path>...]

DESCRIPTION
Creates an archive of the specified format containing the tree structure for the named tree, and writes it

out to the standard output. If <prefix> is specified it is prepended to the filenames in the archive.

git archive behaves differently when given a tree ID versus when given a commit ID or tag ID. In the

first case the current time is used as the modification time of each file in the archive. In the latter case

the commit time as recorded in the referenced commit object is used instead. Additionally the commit

ID is stored in a global extended pax header if the tar format is used; it can be extracted using git

get-tar-commit-id. In ZIP files it is stored as a file comment.

OPTIONS
--format=<fmt>

Format of the resulting archive. Possible values are tar, zip, tar.gz, tgz, and any format defined

using the configuration option tar.<format>.command. If --format is not given, and the output file

is specified, the format is inferred from the filename if possible (e.g. writing to foo.zip makes the

output to be in the zip format). Otherwise the output format is tar.

-l, --list

Show all available formats.

-v, --verbose

Report progress to stderr.

--prefix=<prefix>/

Prepend <prefix>/ to paths in the archive. Can be repeated; its rightmost value is used for all

tracked files. See below which value gets used by --add-file and --add-virtual-file.

-o <file>, --output=<file>

Write the archive to <file> instead of stdout.

GIT-ARCHIVE(1) Git Manual GIT-ARCHIVE(1)

Git 2.42.0 2023-08-21 GIT-ARCHIVE(1)

--add-file=<file>

Add a non-tracked file to the archive. Can be repeated to add multiple files. The path of the file in

the archive is built by concatenating the value of the last --prefix option (if any) before this

--add-file and the basename of <file>.

--add-virtual-file=<path>:<content>

Add the specified contents to the archive. Can be repeated to add multiple files. The path of the

file in the archive is built by concatenating the value of the last --prefix option (if any) before this

--add-virtual-file and <path>.

The <path> argument can start and end with a literal double-quote character; the contained file

name is interpreted as a C-style string, i.e. the backslash is interpreted as escape character. The

path must be quoted if it contains a colon, to avoid the colon from being misinterpreted as the

separator between the path and the contents, or if the path begins or ends with a double-quote

character.

The file mode is limited to a regular file, and the option may be subject to platform-dependent

command-line limits. For non-trivial cases, write an untracked file and use --add-file instead.

--worktree-attributes

Look for attributes in .gitattributes files in the working tree as well (see the section called

"ATTRIBUTES").

--mtime=<time>

Set modification time of archive entries. Without this option the committer time is used if

<tree-ish> is a commit or tag, and the current time if it is a tree.

<extra>

This can be any options that the archiver backend understands. See next section.

--remote=<repo>

Instead of making a tar archive from the local repository, retrieve a tar archive from a remote

repository. Note that the remote repository may place restrictions on which sha1 expressions may

be allowed in <tree-ish>. See git-upload-archive(1) for details.

--exec=<git-upload-archive>

Used with --remote to specify the path to the git-upload-archive on the remote side.

<tree-ish>

The tree or commit to produce an archive for.

GIT-ARCHIVE(1) Git Manual GIT-ARCHIVE(1)

Git 2.42.0 2023-08-21 GIT-ARCHIVE(1)

<path>

Without an optional path parameter, all files and subdirectories of the current working directory

are included in the archive. If one or more paths are specified, only these are included.

BACKEND EXTRA OPTIONS
zip

-<digit>

Specify compression level. Larger values allow the command to spend more time to compress to

smaller size. Supported values are from -0 (store-only) to -9 (best ratio). Default is -6 if not given.

tar
-<number>

Specify compression level. The value will be passed to the compression command configured in

tar.<format>.command. See manual page of the configured command for the list of supported

levels and the default level if this option isn’t specified.

CONFIGURATION
tar.umask

This variable can be used to restrict the permission bits of tar archive entries. The default is 0002,

which turns off the world write bit. The special value "user" indicates that the archiving user’s

umask will be used instead. See umask(2) for details. If --remote is used then only the

configuration of the remote repository takes effect.

tar.<format>.command

This variable specifies a shell command through which the tar output generated by git archive
should be piped. The command is executed using the shell with the generated tar file on its

standard input, and should produce the final output on its standard output. Any compression-level

options will be passed to the command (e.g., -9).

The tar.gz and tgz formats are defined automatically and use the magic command git archive gzip
by default, which invokes an internal implementation of gzip.

tar.<format>.remote

If true, enable the format for use by remote clients via git-upload-archive(1). Defaults to false for

user-defined formats, but true for the tar.gz and tgz formats.

ATTRIBUTES
export-ignore

Files and directories with the attribute export-ignore won’t be added to archive files. See

gitattributes(5) for details.

GIT-ARCHIVE(1) Git Manual GIT-ARCHIVE(1)

Git 2.42.0 2023-08-21 GIT-ARCHIVE(1)

export-subst

If the attribute export-subst is set for a file then Git will expand several placeholders when adding

this file to an archive. See gitattributes(5) for details.

Note that attributes are by default taken from the .gitattributes files in the tree that is being archived. If

you want to tweak the way the output is generated after the fact (e.g. you committed without adding an

appropriate export-ignore in its .gitattributes), adjust the checked out .gitattributes file as necessary and

use --worktree-attributes option. Alternatively you can keep necessary attributes that should apply

while archiving any tree in your $GIT_DIR/info/attributes file.

EXAMPLES
git archive --format=tar --prefix=junk/ HEAD | (cd /var/tmp/ && tar xf -)

Create a tar archive that contains the contents of the latest commit on the current branch, and

extract it in the /var/tmp/junk directory.

git archive --format=tar --prefix=git-1.4.0/ v1.4.0 | gzip >git-1.4.0.tar.gz
Create a compressed tarball for v1.4.0 release.

git archive --format=tar.gz --prefix=git-1.4.0/ v1.4.0 >git-1.4.0.tar.gz
Same as above, but using the builtin tar.gz handling.

git archive --prefix=git-1.4.0/ -o git-1.4.0.tar.gz v1.4.0
Same as above, but the format is inferred from the output file.

git archive --format=tar --prefix=git-1.4.0/ v1.4.0^{tree} | gzip >git-1.4.0.tar.gz
Create a compressed tarball for v1.4.0 release, but without a global extended pax header.

git archive --format=zip --prefix=git-docs/ HEAD:Documentation/ > git-1.4.0-docs.zip
Put everything in the current head’s Documentation/ directory into git-1.4.0-docs.zip, with the

prefix git-docs/.

git archive -o latest.zip HEAD
Create a Zip archive that contains the contents of the latest commit on the current branch. Note

that the output format is inferred by the extension of the output file.

git archive -o latest.tar --prefix=build/ --add-file=configure --prefix= HEAD
Creates a tar archive that contains the contents of the latest commit on the current branch with no

prefix and the untracked file configure with the prefix build/.

git config tar.tar.xz.command "xz -c"

GIT-ARCHIVE(1) Git Manual GIT-ARCHIVE(1)

Git 2.42.0 2023-08-21 GIT-ARCHIVE(1)

Configure a "tar.xz" format for making LZMA-compressed tarfiles. You can use it specifying

--format=tar.xz, or by creating an output file like -o foo.tar.xz.

SEE ALSO
gitattributes(5)

GIT
Part of the git(1) suite

GIT-ARCHIVE(1) Git Manual GIT-ARCHIVE(1)

Git 2.42.0 2023-08-21 GIT-ARCHIVE(1)

