
NAME
git-branch - List, create, or delete branches

SYNOPSIS
git branch [--color[=<when>] | --no-color] [--show-current]

[-v [--abbrev=<n> | --no-abbrev]]

[--column[=<options>] | --no-column] [--sort=<key>]

[--merged [<commit>]] [--no-merged [<commit>]]

[--contains [<commit>]] [--no-contains [<commit>]]

[--points-at <object>] [--format=<format>]

[(-r | --remotes) | (-a | --all)]

[--list] [<pattern>...]

git branch [--track[=(direct|inherit)] | --no-track] [-f]

[--recurse-submodules] <branchname> [<start-point>]

git branch (--set-upstream-to=<upstream> | -u <upstream>) [<branchname>]

git branch --unset-upstream [<branchname>]

git branch (-m | -M) [<oldbranch>] <newbranch>

git branch (-c | -C) [<oldbranch>] <newbranch>

git branch (-d | -D) [-r] <branchname>...

git branch --edit-description [<branchname>]

DESCRIPTION
If --list is given, or if there are no non-option arguments, existing branches are listed; the current

branch will be highlighted in green and marked with an asterisk. Any branches checked out in linked

worktrees will be highlighted in cyan and marked with a plus sign. Option -r causes the

remote-tracking branches to be listed, and option -a shows both local and remote branches.

If a <pattern> is given, it is used as a shell wildcard to restrict the output to matching branches. If

multiple patterns are given, a branch is shown if it matches any of the patterns.

Note that when providing a <pattern>, you must use --list; otherwise the command may be interpreted

as branch creation.

With --contains, shows only the branches that contain the named commit (in other words, the branches

whose tip commits are descendants of the named commit), --no-contains inverts it. With --merged, only

branches merged into the named commit (i.e. the branches whose tip commits are reachable from the

named commit) will be listed. With --no-merged only branches not merged into the named commit will

be listed. If the <commit> argument is missing it defaults to HEAD (i.e. the tip of the current branch).

GIT-BRANCH(1) Git Manual GIT-BRANCH(1)

Git 2.42.0 2023-08-21 GIT-BRANCH(1)

The command’s second form creates a new branch head named <branchname> which points to the

current HEAD, or <start-point> if given. As a special case, for <start-point>, you may use "A...B" as a

shortcut for the merge base of A and B if there is exactly one merge base. You can leave out at most

one of A and B, in which case it defaults to HEAD.

Note that this will create the new branch, but it will not switch the working tree to it; use "git switch

<newbranch>" to switch to the new branch.

When a local branch is started off a remote-tracking branch, Git sets up the branch (specifically the

branch.<name>.remote and branch.<name>.merge configuration entries) so that git pull will

appropriately merge from the remote-tracking branch. This behavior may be changed via the global

branch.autoSetupMerge configuration flag. That setting can be overridden by using the --track and

--no-track options, and changed later using git branch --set-upstream-to.

With a -m or -M option, <oldbranch> will be renamed to <newbranch>. If <oldbranch> had a

corresponding reflog, it is renamed to match <newbranch>, and a reflog entry is created to remember

the branch renaming. If <newbranch> exists, -M must be used to force the rename to happen.

The -c and -C options have the exact same semantics as -m and -M, except instead of the branch being

renamed, it will be copied to a new name, along with its config and reflog.

With a -d or -D option, <branchname> will be deleted. You may specify more than one branch for

deletion. If the branch currently has a reflog then the reflog will also be deleted.

Use -r together with -d to delete remote-tracking branches. Note, that it only makes sense to delete

remote-tracking branches if they no longer exist in the remote repository or if git fetch was configured

not to fetch them again. See also the prune subcommand of git-remote(1) for a way to clean up all

obsolete remote-tracking branches.

OPTIONS
-d, --delete

Delete a branch. The branch must be fully merged in its upstream branch, or in HEAD if no

upstream was set with --track or --set-upstream-to.

-D

Shortcut for --delete --force.

--create-reflog

Create the branch’s reflog. This activates recording of all changes made to the branch ref, enabling

use of date based sha1 expressions such as "<branchname>@{yesterday}". Note that in non-bare

GIT-BRANCH(1) Git Manual GIT-BRANCH(1)

Git 2.42.0 2023-08-21 GIT-BRANCH(1)

repositories, reflogs are usually enabled by default by the core.logAllRefUpdates config option.

The negated form --no-create-reflog only overrides an earlier --create-reflog, but currently does

not negate the setting of core.logAllRefUpdates.

-f, --force

Reset <branchname> to <start-point>, even if <branchname> exists already. Without -f, git branch

refuses to change an existing branch. In combination with -d (or --delete), allow deleting the

branch irrespective of its merged status, or whether it even points to a valid commit. In

combination with -m (or --move), allow renaming the branch even if the new branch name already

exists, the same applies for -c (or --copy).

Note that git branch -f <branchname> [<start-point>], even with -f, refuses to change an existing

branch <branchname> that is checked out in another worktree linked to the same repository.

-m, --move

Move/rename a branch, together with its config and reflog.

-M

Shortcut for --move --force.

-c, --copy

Copy a branch, together with its config and reflog.

-C

Shortcut for --copy --force.

--color[=<when>]

Color branches to highlight current, local, and remote-tracking branches. The value must be

always (the default), never, or auto.

--no-color

Turn off branch colors, even when the configuration file gives the default to color output. Same as

--color=never.

-i, --ignore-case

Sorting and filtering branches are case insensitive.

--omit-empty

Do not print a newline after formatted refs where the format expands to the empty string.

GIT-BRANCH(1) Git Manual GIT-BRANCH(1)

Git 2.42.0 2023-08-21 GIT-BRANCH(1)

--column[=<options>], --no-column

Display branch listing in columns. See configuration variable column.branch for option syntax.

--column and --no-column without options are equivalent to always and never respectively.

This option is only applicable in non-verbose mode.

-r, --remotes

List or delete (if used with -d) the remote-tracking branches. Combine with --list to match the

optional pattern(s).

-a, --all

List both remote-tracking branches and local branches. Combine with --list to match optional

pattern(s).

-l, --list

List branches. With optional <pattern>..., e.g. git branch --list ’maint-*’, list only the branches

that match the pattern(s).

--show-current

Print the name of the current branch. In detached HEAD state, nothing is printed.

-v, -vv, --verbose

When in list mode, show sha1 and commit subject line for each head, along with relationship to

upstream branch (if any). If given twice, print the path of the linked worktree (if any) and the

name of the upstream branch, as well (see also git remote show <remote>). Note that the current

worktree’s HEAD will not have its path printed (it will always be your current directory).

-q, --quiet

Be more quiet when creating or deleting a branch, suppressing non-error messages.

--abbrev=<n>

In the verbose listing that show the commit object name, show the shortest prefix that is at least

<n> hexdigits long that uniquely refers the object. The default value is 7 and can be overridden by

the core.abbrev config option.

--no-abbrev

Display the full sha1s in the output listing rather than abbreviating them.

-t, --track[=(direct|inherit)]

When creating a new branch, set up branch.<name>.remote and branch.<name>.merge

GIT-BRANCH(1) Git Manual GIT-BRANCH(1)

Git 2.42.0 2023-08-21 GIT-BRANCH(1)

configuration entries to set "upstream" tracking configuration for the new branch. This

configuration will tell git to show the relationship between the two branches in git status and git
branch -v. Furthermore, it directs git pull without arguments to pull from the upstream when the

new branch is checked out.

The exact upstream branch is chosen depending on the optional argument: -t, --track, or

--track=direct means to use the start-point branch itself as the upstream; --track=inherit means to

copy the upstream configuration of the start-point branch.

The branch.autoSetupMerge configuration variable specifies how git switch, git checkout and git
branch should behave when neither --track nor --no-track are specified:

The default option, true, behaves as though --track=direct were given whenever the start-point is a

remote-tracking branch. false behaves as if --no-track were given. always behaves as though

--track=direct were given. inherit behaves as though --track=inherit were given. simple behaves

as though --track=direct were given only when the start-point is a remote-tracking branch and the

new branch has the same name as the remote branch.

See git-pull(1) and git-config(1) for additional discussion on how the branch.<name>.remote and

branch.<name>.merge options are used.

--no-track

Do not set up "upstream" configuration, even if the branch.autoSetupMerge configuration variable

is set.

--recurse-submodules

THIS OPTION IS EXPERIMENTAL! Causes the current command to recurse into submodules if

submodule.propagateBranches is enabled. See submodule.propagateBranches in git-config(1).

Currently, only branch creation is supported.

When used in branch creation, a new branch <branchname> will be created in the superproject

and all of the submodules in the superproject’s <start-point>. In submodules, the branch will point

to the submodule commit in the superproject’s <start-point> but the branch’s tracking information

will be set up based on the submodule’s branches and remotes e.g. git branch
--recurse-submodules topic origin/main will create the submodule branch "topic" that points to the

submodule commit in the superproject’s "origin/main", but tracks the submodule’s "origin/main".

--set-upstream

As this option had confusing syntax, it is no longer supported. Please use --track or

--set-upstream-to instead.

GIT-BRANCH(1) Git Manual GIT-BRANCH(1)

Git 2.42.0 2023-08-21 GIT-BRANCH(1)

-u <upstream>, --set-upstream-to=<upstream>

Set up <branchname>’s tracking information so <upstream> is considered <branchname>’s

upstream branch. If no <branchname> is specified, then it defaults to the current branch.

--unset-upstream

Remove the upstream information for <branchname>. If no branch is specified it defaults to the

current branch.

--edit-description

Open an editor and edit the text to explain what the branch is for, to be used by various other

commands (e.g. format-patch, request-pull, and merge (if enabled)). Multi-line explanations may

be used.

--contains [<commit>]

Only list branches which contain the specified commit (HEAD if not specified). Implies --list.

--no-contains [<commit>]

Only list branches which don’t contain the specified commit (HEAD if not specified). Implies

--list.

--merged [<commit>]

Only list branches whose tips are reachable from the specified commit (HEAD if not specified).

Implies --list.

--no-merged [<commit>]

Only list branches whose tips are not reachable from the specified commit (HEAD if not

specified). Implies --list.

<branchname>

The name of the branch to create or delete. The new branch name must pass all checks defined by

git-check-ref-format(1). Some of these checks may restrict the characters allowed in a branch

name.

<start-point>

The new branch head will point to this commit. It may be given as a branch name, a commit-id, or

a tag. If this option is omitted, the current HEAD will be used instead.

<oldbranch>

The name of an existing branch to rename.

GIT-BRANCH(1) Git Manual GIT-BRANCH(1)

Git 2.42.0 2023-08-21 GIT-BRANCH(1)

<newbranch>

The new name for an existing branch. The same restrictions as for <branchname> apply.

--sort=<key>

Sort based on the key given. Prefix - to sort in descending order of the value. You may use the

--sort=<key> option multiple times, in which case the last key becomes the primary key. The keys

supported are the same as those in git for-each-ref. Sort order defaults to the value configured for

the branch.sort variable if exists, or to sorting based on the full refname (including refs/... prefix).

This lists detached HEAD (if present) first, then local branches and finally remote-tracking

branches. See git-config(1).

--points-at <object>

Only list branches of the given object.

--format <format>

A string that interpolates %(fieldname) from a branch ref being shown and the object it points at.

The format is the same as that of git-for-each-ref(1).

CONFIGURATION
pager.branch is only respected when listing branches, i.e., when --list is used or implied. The default is

to use a pager. See git-config(1).

Everything above this line in this section isn’t included from the git-config(1) documentation. The

content that follows is the same as what’s found there:

branch.autoSetupMerge

Tells git branch, git switch and git checkout to set up new branches so that git-pull(1) will

appropriately merge from the starting point branch. Note that even if this option is not set, this

behavior can be chosen per-branch using the --track and --no-track options. The valid settings are:

false -- no automatic setup is done; true -- automatic setup is done when the starting point is a

remote-tracking branch; always -- automatic setup is done when the starting point is either a local

branch or remote-tracking branch; inherit -- if the starting point has a tracking configuration, it is

copied to the new branch; simple -- automatic setup is done only when the starting point is a

remote-tracking branch and the new branch has the same name as the remote branch. This option

defaults to true.

branch.autoSetupRebase

When a new branch is created with git branch, git switch or git checkout that tracks another

branch, this variable tells Git to set up pull to rebase instead of merge (see

"branch.<name>.rebase"). When never, rebase is never automatically set to true. When local,

GIT-BRANCH(1) Git Manual GIT-BRANCH(1)

Git 2.42.0 2023-08-21 GIT-BRANCH(1)

rebase is set to true for tracked branches of other local branches. When remote, rebase is set to true

for tracked branches of remote-tracking branches. When always, rebase will be set to true for all

tracking branches. See "branch.autoSetupMerge" for details on how to set up a branch to track

another branch. This option defaults to never.

branch.sort

This variable controls the sort ordering of branches when displayed by git-branch(1). Without the

"--sort=<value>" option provided, the value of this variable will be used as the default. See git-
for-each-ref(1) field names for valid values.

branch.<name>.remote

When on branch <name>, it tells git fetch and git push which remote to fetch from/push to. The

remote to push to may be overridden with remote.pushDefault (for all branches). The remote to

push to, for the current branch, may be further overridden by branch.<name>.pushRemote. If no

remote is configured, or if you are not on any branch and there is more than one remote defined in

the repository, it defaults to origin for fetching and remote.pushDefault for pushing. Additionally,

. (a period) is the current local repository (a dot-repository), see branch.<name>.merge’s final note

below.

branch.<name>.pushRemote

When on branch <name>, it overrides branch.<name>.remote for pushing. It also overrides

remote.pushDefault for pushing from branch <name>. When you pull from one place (e.g. your

upstream) and push to another place (e.g. your own publishing repository), you would want to set

remote.pushDefault to specify the remote to push to for all branches, and use this option to

override it for a specific branch.

branch.<name>.merge

Defines, together with branch.<name>.remote, the upstream branch for the given branch. It tells

git fetch/git pull/git rebase which branch to merge and can also affect git push (see push.default).

When in branch <name>, it tells git fetch the default refspec to be marked for merging in

FETCH_HEAD. The value is handled like the remote part of a refspec, and must match a ref

which is fetched from the remote given by "branch.<name>.remote". The merge information is

used by git pull (which at first calls git fetch) to lookup the default branch for merging. Without

this option, git pull defaults to merge the first refspec fetched. Specify multiple values to get an

octopus merge. If you wish to setup git pull so that it merges into <name> from another branch in

the local repository, you can point branch.<name>.merge to the desired branch, and use the

relative path setting . (a period) for branch.<name>.remote.

branch.<name>.mergeOptions

Sets default options for merging into branch <name>. The syntax and supported options are the

GIT-BRANCH(1) Git Manual GIT-BRANCH(1)

Git 2.42.0 2023-08-21 GIT-BRANCH(1)

same as those of git-merge(1), but option values containing whitespace characters are currently

not supported.

branch.<name>.rebase

When true, rebase the branch <name> on top of the fetched branch, instead of merging the default

branch from the default remote when "git pull" is run. See "pull.rebase" for doing this in a non

branch-specific manner.

When merges (or just m), pass the --rebase-merges option to git rebase so that the local merge

commits are included in the rebase (see git-rebase(1) for details).

When the value is interactive (or just i), the rebase is run in interactive mode.

NOTE: this is a possibly dangerous operation; do not use it unless you understand the implications

(see git-rebase(1) for details).

branch.<name>.description

Branch description, can be edited with git branch --edit-description. Branch description is

automatically added in the format-patch cover letter or request-pull summary.

EXAMPLES
Start development from a known tag

$ git clone git://git.kernel.org/pub/scm/.../linux-2.6 my2.6

$ cd my2.6

$ git branch my2.6.14 v2.6.14 (1)
$ git switch my2.6.14

1. This step and the next one

could be combined into a

single step with "checkout -b

my2.6.14 v2.6.14".

Delete an unneeded branch

$ git clone git://git.kernel.org/.../git.git my.git

$ cd my.git

$ git branch -d -r origin/todo origin/html origin/man (1)
$ git branch -D test (2)

GIT-BRANCH(1) Git Manual GIT-BRANCH(1)

Git 2.42.0 2023-08-21 GIT-BRANCH(1)

1. Delete the remote-tracking

branches "todo", "html" and

"man". The next fetch or pull will

create them again unless you

configure them not to. See

git-fetch(1).

2. Delete the "test" branch even if the

"master" branch (or whichever

branch is currently checked out)

does not have all commits from the

test branch.

Listing branches from a specific remote

$ git branch -r -l ’<remote>/<pattern>’ (1)
$ git for-each-ref ’refs/remotes/<remote>/<pattern>’ (2)

1. Using -a would conflate <remote>

with any local branches you

happen to have been prefixed with

the same <remote> pattern.

2. for-each-ref can take a wide range

of options. See git-for-each-ref(1)

Patterns will normally need quoting.

NOTES
If you are creating a branch that you want to switch to immediately, it is easier to use the "git switch"

command with its -c option to do the same thing with a single command.

The options --contains, --no-contains, --merged and --no-merged serve four related but different

purposes:

+o

<commit> is used to find all branches which will need special attention if <commit> were to be rebased or

amended, since those branches contain the specified <commit>.

+o

<commit> is the inverse of that, i.e. branches that don’t contain the specified <commit>.

GIT-BRANCH(1) Git Manual GIT-BRANCH(1)

Git 2.42.0 2023-08-21 GIT-BRANCH(1)

+o

is used to find all branches which can be safely deleted, since those branches are fully contained by

HEAD.

+o

is used to find branches which are candidates for merging into HEAD, since those branches are not fully

contained by HEAD.

When combining multiple --contains and --no-contains filters, only references that contain at least one

of the --contains commits and contain none of the --no-contains commits are shown.

When combining multiple --merged and --no-merged filters, only references that are reachable from at

least one of the --merged commits and from none of the --no-merged commits are shown.

SEE ALSO
git-check-ref-format(1), git-fetch(1), git-remote(1), "Understanding history: What is a branch?"[1] in

the Git User’s Manual.

GIT
Part of the git(1) suite

NOTES
1. "Understanding history: What is a branch?"

git-htmldocs/user-manual.html#what-is-a-branch

GIT-BRANCH(1) Git Manual GIT-BRANCH(1)

Git 2.42.0 2023-08-21 GIT-BRANCH(1)

