
NAME
git-check-ref-format - Ensures that a reference name is well formed

SYNOPSIS
git check-ref-format [--normalize]

[--[no-]allow-onelevel] [--refspec-pattern]

<refname>

git check-ref-format --branch <branchname-shorthand>

DESCRIPTION
Checks if a given refname is acceptable, and exits with a non-zero status if it is not.

A reference is used in Git to specify branches and tags. A branch head is stored in the refs/heads
hierarchy, while a tag is stored in the refs/tags hierarchy of the ref namespace (typically in

$GIT_DIR/refs/heads and $GIT_DIR/refs/tags directories or, as entries in file $GIT_DIR/packed-refs
if refs are packed by git gc).

Git imposes the following rules on how references are named:

1.

can include slash / for hierarchical (directory) grouping, but no slash-separated component can begin with

a dot . or end with the sequence .lock.

2.

must contain at least one /. This enforces the presence of a category like heads/, tags/ etc. but the actual

names are not restricted. If the --allow-onelevel option is used, this rule is waived.

3.

cannot have two consecutive dots .. anywhere.

4.

cannot have ASCII control characters (i.e. bytes whose values are lower than \040, or \177 DEL), space,

tilde ~, caret ^, or colon : anywhere.

5.

cannot have question-mark ?, asterisk *, or open bracket [anywhere. See the --refspec-pattern option

below for an exception to this rule.

6.

GIT-CHECK-REF-FORMAT(1) Git Manual GIT-CHECK-REF-FORMAT(1)

Git 2.42.0 2023-08-21 GIT-CHECK-REF-FORMAT(1)

cannot begin or end with a slash / or contain multiple

consecutive slashes (see the --normalize option below for

an exception to this rule)

7.

cannot end with a dot ..

8.

cannot contain a sequence @{.

9.

cannot be the single character @.

10.

cannot contain a \.

These rules make it easy for shell script based tools to parse reference names, pathname expansion by

the shell when a reference name is used unquoted (by mistake), and also avoid ambiguities in certain

reference name expressions (see gitrevisions(7)):

1.

double-dot .. is often used as in ref1..ref2, and in some contexts this notation means ^ref1 ref2 (i.e. not in

ref1 and in ref2).

2.

tilde ~ and caret ^ are used to introduce the postfix nth parent and peel onion operation.

3.

colon : is used as in srcref:dstref to mean "use srcref’s value and store it in dstref" in fetch and push

operations. It may also be used to select a specific object such as with git cat-file: "git cat-file blob

v1.3.3:refs.c".

4.

@{ is used as a notation to access a reflog entry.

With the --branch option, the command takes a name and checks if it can be used as a valid branch

name (e.g. when creating a new branch). But be cautious when using the previous checkout syntax that

may refer to a detached HEAD state. The rule git check-ref-format --branch $name implements may be

stricter than what git check-ref-format refs/heads/$name says (e.g. a dash may appear at the beginning

of a ref component, but it is explicitly forbidden at the beginning of a branch name). When run with

GIT-CHECK-REF-FORMAT(1) Git Manual GIT-CHECK-REF-FORMAT(1)

Git 2.42.0 2023-08-21 GIT-CHECK-REF-FORMAT(1)

--branch option in a repository, the input

is first expanded for the "previous

checkout syntax" @{-n}. For example,

@{-1} is a way to refer the last thing that

was checked out using "git switch" or

"git checkout" operation. This option

should be used by porcelains to accept

this syntax anywhere a branch name is

expected, so they can act as if you typed

the branch name. As an exception note

that, the "previous checkout operation"

might result in a commit object name

when the N-th last thing checked out was

not a branch.

OPTIONS
--[no-]allow-onelevel

Controls whether one-level refnames are accepted (i.e., refnames that do not contain multiple

/-separated components). The default is --no-allow-onelevel.

--refspec-pattern

Interpret <refname> as a reference name pattern for a refspec (as used with remote repositories). If

this option is enabled, <refname> is allowed to contain a single * in the refspec (e.g., foo/bar*/baz
or foo/bar*baz/ but not foo/bar*/baz*).

--normalize

Normalize refname by removing any leading slash (/) characters and collapsing runs of adjacent

slashes between name components into a single slash. If the normalized refname is valid then print

it to standard output and exit with a status of 0, otherwise exit with a non-zero status. (--print is a

deprecated way to spell --normalize.)

EXAMPLES
+o

the name of the previous thing checked out:

$ git check-ref-format --branch @{-1}

+o

the reference name to use for a new branch:

GIT-CHECK-REF-FORMAT(1) Git Manual GIT-CHECK-REF-FORMAT(1)

Git 2.42.0 2023-08-21 GIT-CHECK-REF-FORMAT(1)

$ ref=$(git check-ref-format --normalize "refs/heads/$newbranch")||

{ echo "we do not like ’$newbranch’ as a branch name." >&2 ; exit 1 ; }

GIT
Part of the git(1) suite

GIT-CHECK-REF-FORMAT(1) Git Manual GIT-CHECK-REF-FORMAT(1)

Git 2.42.0 2023-08-21 GIT-CHECK-REF-FORMAT(1)

