
NAME
git-checkout - Switch branches or restore working tree files

SYNOPSIS
git checkout [-q] [-f] [-m] [<branch>]

git checkout [-q] [-f] [-m] --detach [<branch>]

git checkout [-q] [-f] [-m] [--detach] <commit>

git checkout [-q] [-f] [-m] [[-b|-B|--orphan] <new-branch>] [<start-point>]

git checkout [-f] <tree-ish> [--] <pathspec>...

git checkout [-f] <tree-ish> --pathspec-from-file=<file> [--pathspec-file-nul]

git checkout [-f|--ours|--theirs|-m|--conflict=<style>] [--] <pathspec>...

git checkout [-f|--ours|--theirs|-m|--conflict=<style>] --pathspec-from-file=<file> [--pathspec-file-nul]

git checkout (-p|--patch) [<tree-ish>] [--] [<pathspec>...]

DESCRIPTION
Updates files in the working tree to match the version in the index or the specified tree. If no pathspec

was given, git checkout will also update HEAD to set the specified branch as the current branch.

git checkout [<branch>]

To prepare for working on <branch>, switch to it by updating the index and the files in the

working tree, and by pointing HEAD at the branch. Local modifications to the files in the working

tree are kept, so that they can be committed to the <branch>.

If <branch> is not found but there does exist a tracking branch in exactly one remote (call it

<remote>) with a matching name and --no-guess is not specified, treat as equivalent to

$ git checkout -b <branch> --track <remote>/<branch>

You could omit <branch>, in which case the command degenerates to "check out the current

branch", which is a glorified no-op with rather expensive side-effects to show only the tracking

information, if it exists, for the current branch.

git checkout -b|-B <new-branch> [<start-point>]

Specifying -b causes a new branch to be created as if git-branch(1) were called and then checked

out. In this case you can use the --track or --no-track options, which will be passed to git branch.

As a convenience, --track without -b implies branch creation; see the description of --track below.

If -B is given, <new-branch> is created if it doesn’t exist; otherwise, it is reset. This is the

transactional equivalent of

GIT-CHECKOUT(1) Git Manual GIT-CHECKOUT(1)

Git 2.45.2 2024-05-30 GIT-CHECKOUT(1)

$ git branch -f <branch> [<start-point>]

$ git checkout <branch>

that is to say, the branch is not reset/created unless "git checkout" is successful (e.g., when the

branch is in use in another worktree, not just the current branch stays the same, but the branch is

not reset to the start-point, either).

git checkout --detach [<branch>], git checkout [--detach] <commit>

Prepare to work on top of <commit>, by detaching HEAD at it (see "DETACHED HEAD"

section), and updating the index and the files in the working tree. Local modifications to the files

in the working tree are kept, so that the resulting working tree will be the state recorded in the

commit plus the local modifications.

When the <commit> argument is a branch name, the --detach option can be used to detach HEAD
at the tip of the branch (git checkout <branch> would check out that branch without detaching

HEAD).

Omitting <branch> detaches HEAD at the tip of the current branch.

git checkout [-f|--ours|--theirs|-m|--conflict=<style>] [<tree-ish>] [--] <pathspec>..., git checkout

[-f|--ours|--theirs|-m|--conflict=<style>] [<tree-ish>] --pathspec-from-file=<file> [--pathspec-file-nul]

Overwrite the contents of the files that match the pathspec. When the <tree-ish> (most often a

commit) is not given, overwrite working tree with the contents in the index. When the <tree-ish>
is given, overwrite both the index and the working tree with the contents at the <tree-ish>.

The index may contain unmerged entries because of a previous failed merge. By default, if you try

to check out such an entry from the index, the checkout operation will fail and nothing will be

checked out. Using -f will ignore these unmerged entries. The contents from a specific side of the

merge can be checked out of the index by using --ours or --theirs. With -m, changes made to the

working tree file can be discarded to re-create the original conflicted merge result.

git checkout (-p|--patch) [<tree-ish>] [--] [<pathspec>...]

This is similar to the previous mode, but lets you use the interactive interface to show the "diff"

output and choose which hunks to use in the result. See below for the description of --patch
option.

OPTIONS
-q, --quiet

Quiet, suppress feedback messages.

GIT-CHECKOUT(1) Git Manual GIT-CHECKOUT(1)

Git 2.45.2 2024-05-30 GIT-CHECKOUT(1)

--progress, --no-progress

Progress status is reported on the standard error stream by default when it is attached to a terminal,

unless --quiet is specified. This flag enables progress reporting even if not attached to a terminal,

regardless of --quiet.

-f, --force

When switching branches, proceed even if the index or the working tree differs from HEAD, and

even if there are untracked files in the way. This is used to throw away local changes and any

untracked files or directories that are in the way.

When checking out paths from the index, do not fail upon unmerged entries; instead, unmerged

entries are ignored.

--ours, --theirs

When checking out paths from the index, check out stage #2 (ours) or #3 (theirs) for unmerged

paths.

Note that during git rebase and git pull --rebase, ours and theirs may appear swapped; --ours gives

the version from the branch the changes are rebased onto, while --theirs gives the version from the

branch that holds your work that is being rebased.

This is because rebase is used in a workflow that treats the history at the remote as the shared

canonical one, and treats the work done on the branch you are rebasing as the third-party work to

be integrated, and you are temporarily assuming the role of the keeper of the canonical history

during the rebase. As the keeper of the canonical history, you need to view the history from the

remote as ours (i.e. "our shared canonical history"), while what you did on your side branch as

theirs (i.e. "one contributor’s work on top of it").

-b <new-branch>

Create a new branch named <new-branch>, start it at <start-point>, and check the resulting branch

out; see git-branch(1) for details.

-B <new-branch>

Creates the branch <new-branch>, start it at <start-point>; if it already exists, then reset it to

<start-point>. And then check the resulting branch out. This is equivalent to running "git branch"

with "-f" followed by "git checkout" of that branch; see git-branch(1) for details.

-t, --track[=(direct|inherit)]

When creating a new branch, set up "upstream" configuration. See "--track" in git-branch(1) for

details.

GIT-CHECKOUT(1) Git Manual GIT-CHECKOUT(1)

Git 2.45.2 2024-05-30 GIT-CHECKOUT(1)

If no -b option is given, the name of the new branch will be derived from the remote-tracking

branch, by looking at the local part of the refspec configured for the corresponding remote, and

then stripping the initial part up to the "*". This would tell us to use hack as the local branch when

branching off of origin/hack (or remotes/origin/hack, or even refs/remotes/origin/hack). If the

given name has no slash, or the above guessing results in an empty name, the guessing is aborted.

You can explicitly give a name with -b in such a case.

--no-track

Do not set up "upstream" configuration, even if the branch.autoSetupMerge configuration variable

is true.

--guess, --no-guess

If <branch> is not found but there does exist a tracking branch in exactly one remote (call it

<remote>) with a matching name, treat as equivalent to

$ git checkout -b <branch> --track <remote>/<branch>

If the branch exists in multiple remotes and one of them is named by the checkout.defaultRemote
configuration variable, we’ll use that one for the purposes of disambiguation, even if the <branch>
isn’t unique across all remotes. Set it to e.g. checkout.defaultRemote=origin to always checkout

remote branches from there if <branch> is ambiguous but exists on the origin remote. See also

checkout.defaultRemote in git-config(1).

--guess is the default behavior. Use --no-guess to disable it.

The default behavior can be set via the checkout.guess configuration variable.

-l

Create the new branch’s reflog; see git-branch(1) for details.

-d, --detach

Rather than checking out a branch to work on it, check out a commit for inspection and

discardable experiments. This is the default behavior of git checkout <commit> when <commit>
is not a branch name. See the "DETACHED HEAD" section below for details.

--orphan <new-branch>

Create a new unborn branch, named <new-branch>, started from <start-point> and switch to it.

The first commit made on this new branch will have no parents and it will be the root of a new

history totally disconnected from all the other branches and commits.

GIT-CHECKOUT(1) Git Manual GIT-CHECKOUT(1)

Git 2.45.2 2024-05-30 GIT-CHECKOUT(1)

The index and the working tree are adjusted as if you had previously run git checkout
<start-point>. This allows you to start a new history that records a set of paths similar to

<start-point> by easily running git commit -a to make the root commit.

This can be useful when you want to publish the tree from a commit without exposing its full

history. You might want to do this to publish an open source branch of a project whose current

tree is "clean", but whose full history contains proprietary or otherwise encumbered bits of code.

If you want to start a disconnected history that records a set of paths that is totally different from

the one of <start-point>, then you should clear the index and the working tree right after creating

the orphan branch by running git rm -rf . from the top level of the working tree. Afterwards you

will be ready to prepare your new files, repopulating the working tree, by copying them from

elsewhere, extracting a tarball, etc.

--ignore-skip-worktree-bits

In sparse checkout mode, git checkout -- <paths> would update only entries matched by <paths>
and sparse patterns in $GIT_DIR/info/sparse-checkout. This option ignores the sparse patterns and

adds back any files in <paths>.

-m, --merge

When switching branches, if you have local modifications to one or more files that are different

between the current branch and the branch to which you are switching, the command refuses to

switch branches in order to preserve your modifications in context. However, with this option, a

three-way merge between the current branch, your working tree contents, and the new branch is

done, and you will be on the new branch.

When a merge conflict happens, the index entries for conflicting paths are left unmerged, and you

need to resolve the conflicts and mark the resolved paths with git add (or git rm if the merge

should result in deletion of the path).

When checking out paths from the index, this option lets you recreate the conflicted merge in the

specified paths. This option cannot be used when checking out paths from a tree-ish.

When switching branches with --merge, staged changes may be lost.

--conflict=<style>

The same as --merge option above, but changes the way the conflicting hunks are presented,

overriding the merge.conflictStyle configuration variable. Possible values are "merge" (default),

"diff3", and "zdiff3".

GIT-CHECKOUT(1) Git Manual GIT-CHECKOUT(1)

Git 2.45.2 2024-05-30 GIT-CHECKOUT(1)

-p, --patch

Interactively select hunks in the difference between the <tree-ish> (or the index, if unspecified)

and the working tree. The chosen hunks are then applied in reverse to the working tree (and if a

<tree-ish> was specified, the index).

This means that you can use git checkout -p to selectively discard edits from your current working

tree. See the "Interactive Mode" section of git-add(1) to learn how to operate the --patch mode.

Note that this option uses the no overlay mode by default (see also --overlay), and currently

doesn’t support overlay mode.

--ignore-other-worktrees

git checkout refuses when the wanted ref is already checked out by another worktree. This option

makes it check the ref out anyway. In other words, the ref can be held by more than one worktree.

--overwrite-ignore, --no-overwrite-ignore

Silently overwrite ignored files when switching branches. This is the default behavior. Use

--no-overwrite-ignore to abort the operation when the new branch contains ignored files.

--recurse-submodules, --no-recurse-submodules

Using --recurse-submodules will update the content of all active submodules according to the

commit recorded in the superproject. If local modifications in a submodule would be overwritten

the checkout will fail unless -f is used. If nothing (or --no-recurse-submodules) is used,

submodules working trees will not be updated. Just like git-submodule(1), this will detach HEAD
of the submodule.

--overlay, --no-overlay

In the default overlay mode, git checkout never removes files from the index or the working tree.

When specifying --no-overlay, files that appear in the index and working tree, but not in

<tree-ish> are removed, to make them match <tree-ish> exactly.

--pathspec-from-file=<file>

Pathspec is passed in <file> instead of commandline args. If <file> is exactly - then standard input

is used. Pathspec elements are separated by LF or CR/LF. Pathspec elements can be quoted as

explained for the configuration variable core.quotePath (see git-config(1)). See also

--pathspec-file-nul and global --literal-pathspecs.

--pathspec-file-nul

Only meaningful with --pathspec-from-file. Pathspec elements are separated with NUL character

and all other characters are taken literally (including newlines and quotes).

GIT-CHECKOUT(1) Git Manual GIT-CHECKOUT(1)

Git 2.45.2 2024-05-30 GIT-CHECKOUT(1)

<branch>

Branch to checkout; if it refers to a branch (i.e., a name that, when prepended with "refs/heads/", is

a valid ref), then that branch is checked out. Otherwise, if it refers to a valid commit, your HEAD
becomes "detached" and you are no longer on any branch (see below for details).

You can use the @{-N} syntax to refer to the N-th last branch/commit checked out using "git

checkout" operation. You may also specify - which is synonymous to @{-1}.

As a special case, you may use A...B as a shortcut for the merge base of A and B if there is exactly

one merge base. You can leave out at most one of A and B, in which case it defaults to HEAD.

<new-branch>

Name for the new branch.

<start-point>

The name of a commit at which to start the new branch; see git-branch(1) for details. Defaults to

HEAD.

As a special case, you may use "A...B" as a shortcut for the merge base of A and B if there is

exactly one merge base. You can leave out at most one of A and B, in which case it defaults to

HEAD.

<tree-ish>

Tree to checkout from (when paths are given). If not specified, the index will be used.

As a special case, you may use "A...B" as a shortcut for the merge base of A and B if there is

exactly one merge base. You can leave out at most one of A and B, in which case it defaults to

HEAD.

--

Do not interpret any more arguments as options.

<pathspec>...

Limits the paths affected by the operation.

For more details, see the pathspec entry in gitglossary(7).

DETACHED HEAD
HEAD normally refers to a named branch (e.g. master). Meanwhile, each branch refers to a specific

commit. Let’s look at a repo with three commits, one of them tagged, and with branch master checked

GIT-CHECKOUT(1) Git Manual GIT-CHECKOUT(1)

Git 2.45.2 2024-05-30 GIT-CHECKOUT(1)

out:

HEAD (refers to branch ’master’)

|

v

a---b---c branch ’master’ (refers to commit ’c’)

^

|

tag ’v2.0’ (refers to commit ’b’)

When a commit is created in this state, the branch is updated to refer to the new commit. Specifically,

git commit creates a new commit d, whose parent is commit c, and then updates branch master to refer

to new commit d. HEAD still refers to branch master and so indirectly now refers to commit d:

$ edit; git add; git commit

HEAD (refers to branch ’master’)

|

v

a---b---c---d branch ’master’ (refers to commit ’d’)

^

|

tag ’v2.0’ (refers to commit ’b’)

It is sometimes useful to be able to checkout a commit that is not at the tip of any named branch, or

even to create a new commit that is not referenced by a named branch. Let’s look at what happens

when we checkout commit b (here we show two ways this may be done):

$ git checkout v2.0 # or

$ git checkout master^^

HEAD (refers to commit ’b’)

|

v

a---b---c---d branch ’master’ (refers to commit ’d’)

^

|

tag ’v2.0’ (refers to commit ’b’)

GIT-CHECKOUT(1) Git Manual GIT-CHECKOUT(1)

Git 2.45.2 2024-05-30 GIT-CHECKOUT(1)

Notice that regardless of which checkout command we use, HEAD now refers directly to commit b.

This is known as being in detached HEAD state. It means simply that HEAD refers to a specific

commit, as opposed to referring to a named branch. Let’s see what happens when we create a commit:

$ edit; git add; git commit

HEAD (refers to commit ’e’)

|

v

e

/

a---b---c---d branch ’master’ (refers to commit ’d’)

^

|

tag ’v2.0’ (refers to commit ’b’)

There is now a new commit e, but it is referenced only by HEAD. We can of course add yet another

commit in this state:

$ edit; git add; git commit

HEAD (refers to commit ’f’)

|

v

e---f

/

a---b---c---d branch ’master’ (refers to commit ’d’)

^

|

tag ’v2.0’ (refers to commit ’b’)

In fact, we can perform all the normal Git operations. But, let’s look at what happens when we then

checkout master:

$ git checkout master

HEAD (refers to branch ’master’)

e---f |

GIT-CHECKOUT(1) Git Manual GIT-CHECKOUT(1)

Git 2.45.2 2024-05-30 GIT-CHECKOUT(1)

/ v

a---b---c---d branch ’master’ (refers to commit ’d’)

^

|

tag ’v2.0’ (refers to commit ’b’)

It is important to realize that at this point nothing refers to commit f. Eventually commit f (and by

extension commit e) will be deleted by the routine Git garbage collection process, unless we create a

reference before that happens. If we have not yet moved away from commit f, any of these will create a

reference to it:

$ git checkout -b foo # or "git switch -c foo" (1)
$ git branch foo (2)
$ git tag foo (3)

1. creates a new branch foo, which

refers to commit f, and then

updates HEAD to refer to branch

foo. In other words, we’ll no

longer be in detached HEAD state

after this command.

2. similarly creates a new branch foo,

which refers to commit f, but

leaves HEAD detached.

3. creates a new tag foo, which refers

to commit f, leaving HEAD
detached.

If we have moved away from commit f, then we must first recover its object name (typically by using

git reflog), and then we can create a reference to it. For example, to see the last two commits to which

HEAD referred, we can use either of these commands:

$ git reflog -2 HEAD # or

$ git log -g -2 HEAD

ARGUMENT DISAMBIGUATION
When there is only one argument given and it is not -- (e.g. git checkout abc), and when the argument

GIT-CHECKOUT(1) Git Manual GIT-CHECKOUT(1)

Git 2.45.2 2024-05-30 GIT-CHECKOUT(1)

is both a valid <tree-ish> (e.g. a branch abc exists) and a valid <pathspec> (e.g. a file or a

directory whose name is "abc" exists), Git would usually ask you to disambiguate. Because

checking out a branch is so common an operation, however, git checkout abc takes "abc" as a

<tree-ish> in such a situation. Use git checkout -- <pathspec> if you want to checkout these

paths out of the index.

EXAMPLES
1. Paths

The following sequence checks out the master branch, reverts the Makefile to two revisions back,

deletes hello.c by mistake, and gets it back from the index.

$ git checkout master (1)
$ git checkout master~2 Makefile (2)
$ rm -f hello.c

$ git checkout hello.c (3)

1. switch

branch

2. take a file out of another

commit

3. restore hello.c from the

index

If you want to check out all C source files out of the index, you can say

$ git checkout -- ’*.c’

Note the quotes around *.c. The file hello.c will also be checked out, even though it is no longer in the

working tree, because the file globbing is used to match entries in the index (not in the working tree by

the shell).

If you have an unfortunate branch that is named hello.c, this step would be confused as an instruction

to switch to that branch. You should instead write:

$ git checkout -- hello.c

2. Merge

GIT-CHECKOUT(1) Git Manual GIT-CHECKOUT(1)

Git 2.45.2 2024-05-30 GIT-CHECKOUT(1)

After working in the wrong branch, switching to the correct branch would be done using:

$ git checkout mytopic

However, your "wrong" branch and correct mytopic branch may differ in files that you have modified

locally, in which case the above checkout would fail like this:

$ git checkout mytopic

error: You have local changes to ’frotz’; not switching branches.

You can give the -m flag to the command, which would try a three-way merge:

$ git checkout -m mytopic

Auto-merging frotz

After this three-way merge, the local modifications are not registered in your index file, so git diff
would show you what changes you made since the tip of the new branch.

3. Merge conflict
When a merge conflict happens during switching branches with the -m option, you would see

something like this:

$ git checkout -m mytopic

Auto-merging frotz

ERROR: Merge conflict in frotz

fatal: merge program failed

At this point, git diff shows the changes cleanly merged as in the previous example, as well as the

changes in the conflicted files. Edit and resolve the conflict and mark it resolved with git add as usual:

$ edit frotz

$ git add frotz

CONFIGURATION
Everything below this line in this section is selectively included from the git-config(1) documentation.

GIT-CHECKOUT(1) Git Manual GIT-CHECKOUT(1)

Git 2.45.2 2024-05-30 GIT-CHECKOUT(1)

The content is the same as what’s found there:

checkout.defaultRemote

When you run git checkout <something> or git switch <something> and only have one remote, it

may implicitly fall back on checking out and tracking e.g. origin/<something>. This stops

working as soon as you have more than one remote with a <something> reference. This setting

allows for setting the name of a preferred remote that should always win when it comes to

disambiguation. The typical use-case is to set this to origin.

Currently this is used by git-switch(1) and git-checkout(1) when git checkout <something> or git
switch <something> will checkout the <something> branch on another remote, and by git-
worktree(1) when git worktree add refers to a remote branch. This setting might be used for other

checkout-like commands or functionality in the future.

checkout.guess

Provides the default value for the --guess or --no-guess option in git checkout and git switch. See

git-switch(1) and git-checkout(1).

checkout.workers

The number of parallel workers to use when updating the working tree. The default is one, i.e.

sequential execution. If set to a value less than one, Git will use as many workers as the number of

logical cores available. This setting and checkout.thresholdForParallelism affect all commands

that perform checkout. E.g. checkout, clone, reset, sparse-checkout, etc.

Note: Parallel checkout usually delivers better performance for repositories located on SSDs or

over NFS. For repositories on spinning disks and/or machines with a small number of cores, the

default sequential checkout often performs better. The size and compression level of a repository

might also influence how well the parallel version performs.

checkout.thresholdForParallelism

When running parallel checkout with a small number of files, the cost of subprocess spawning and

inter-process communication might outweigh the parallelization gains. This setting allows you to

define the minimum number of files for which parallel checkout should be attempted. The default

is 100.

SEE ALSO
git-switch(1), git-restore(1)

GIT
Part of the git(1) suite

GIT-CHECKOUT(1) Git Manual GIT-CHECKOUT(1)

Git 2.45.2 2024-05-30 GIT-CHECKOUT(1)

