
NAME
git-cherry-pick - Apply the changes introduced by some existing commits

SYNOPSIS
git cherry-pick [--edit] [-n] [-m <parent-number>] [-s] [-x] [--ff]

[-S[<keyid>]] <commit>...

git cherry-pick (--continue | --skip | --abort | --quit)

DESCRIPTION
Given one or more existing commits, apply the change each one introduces, recording a new commit

for each. This requires your working tree to be clean (no modifications from the HEAD commit).

When it is not obvious how to apply a change, the following happens:

1.

current branch and HEAD pointer stay at the last commit successfully made.

2.

CHERRY_PICK_HEAD ref is set to point at the commit that introduced the change that is difficult to

apply.

3.

in which the change applied cleanly are updated both in the index file and in your working tree.

4.

conflicting paths, the index file records up to three versions, as described in the "TRUE MERGE" section

of git-merge(1). The working tree files will include a description of the conflict bracketed by the usual

conflict markers <<<<<<< and >>>>>>>.

5.

other modifications are made.

See git-merge(1) for some hints on resolving such conflicts.

OPTIONS
<commit>...

Commits to cherry-pick. For a more complete list of ways to spell commits, see gitrevisions(7).

Sets of commits can be passed but no traversal is done by default, as if the --no-walk option was

specified, see git-rev-list(1). Note that specifying a range will feed all <commit>... arguments to a

GIT-CHERRY-PICK(1) Git Manual GIT-CHERRY-PICK(1)

Git 2.45.2 2024-05-30 GIT-CHERRY-PICK(1)

single revision walk (see a later example that uses maint

master..next).

-e, --edit

With this option, git cherry-pick will let you edit the commit message prior to committing.

--cleanup=<mode>

This option determines how the commit message will be cleaned up before being passed on to the

commit machinery. See git-commit(1) for more details. In particular, if the <mode> is given a

value of scissors, scissors will be appended to MERGE_MSG before being passed on in the case

of a conflict.

-x

When recording the commit, append a line that says "(cherry picked from commit ...)" to the

original commit message in order to indicate which commit this change was cherry-picked from.

This is done only for cherry picks without conflicts. Do not use this option if you are

cherry-picking from your private branch because the information is useless to the recipient. If on

the other hand you are cherry-picking between two publicly visible branches (e.g. backporting a

fix to a maintenance branch for an older release from a development branch), adding this

information can be useful.

-r

It used to be that the command defaulted to do -x described above, and -r was to disable it. Now

the default is not to do -x so this option is a no-op.

-m <parent-number>, --mainline <parent-number>

Usually you cannot cherry-pick a merge because you do not know which side of the merge should

be considered the mainline. This option specifies the parent number (starting from 1) of the

mainline and allows cherry-pick to replay the change relative to the specified parent.

-n, --no-commit

Usually the command automatically creates a sequence of commits. This flag applies the changes

necessary to cherry-pick each named commit to your working tree and the index, without making

any commit. In addition, when this option is used, your index does not have to match the HEAD

commit. The cherry-pick is done against the beginning state of your index.

This is useful when cherry-picking more than one commits’ effect to your index in a row.

-s, --signoff

Add a Signed-off-by trailer at the end of the commit message. See the signoff option in git-

GIT-CHERRY-PICK(1) Git Manual GIT-CHERRY-PICK(1)

Git 2.45.2 2024-05-30 GIT-CHERRY-PICK(1)

commit(1) for more information.

-S[<keyid>], --gpg-sign[=<keyid>], --no-gpg-sign

GPG-sign commits. The keyid argument is optional and defaults to the committer identity; if

specified, it must be stuck to the option without a space. --no-gpg-sign is useful to countermand

both commit.gpgSign configuration variable, and earlier --gpg-sign.

--ff

If the current HEAD is the same as the parent of the cherry-pick’ed commit, then a fast forward to

this commit will be performed.

--allow-empty

By default, cherry-picking an empty commit will fail, indicating that an explicit invocation of git
commit --allow-empty is required. This option overrides that behavior, allowing empty commits

to be preserved automatically in a cherry-pick. Note that when "--ff" is in effect, empty commits

that meet the "fast-forward" requirement will be kept even without this option. Note also, that use

of this option only keeps commits that were initially empty (i.e. the commit recorded the same tree

as its parent). Commits which are made empty due to a previous commit will cause the

cherry-pick to fail. To force the inclusion of those commits, use --empty=keep.

--allow-empty-message

By default, cherry-picking a commit with an empty message will fail. This option overrides that

behavior, allowing commits with empty messages to be cherry picked.

--empty=(drop|keep|stop)

How to handle commits being cherry-picked that are redundant with changes already in the

current history.

drop
The commit will be dropped.

keep
The commit will be kept. Implies --allow-empty.

stop
The cherry-pick will stop when the commit is applied, allowing you to examine the commit.

This is the default behavior.

Note that --empty=drop and --empty=stop only specify how to handle a commit that was not

initially empty, but rather became empty due to a previous commit. Commits that were initially

GIT-CHERRY-PICK(1) Git Manual GIT-CHERRY-PICK(1)

Git 2.45.2 2024-05-30 GIT-CHERRY-PICK(1)

empty will still cause the cherry-pick to fail unless one of --empty=keep or --allow-empty are

specified.

--keep-redundant-commits

Deprecated synonym for --empty=keep.

--strategy=<strategy>

Use the given merge strategy. Should only be used once. See the MERGE STRATEGIES section

in git-merge(1) for details.

-X<option>, --strategy-option=<option>

Pass the merge strategy-specific option through to the merge strategy. See git-merge(1) for details.

--rerere-autoupdate, --no-rerere-autoupdate

After the rerere mechanism reuses a recorded resolution on the current conflict to update the files

in the working tree, allow it to also update the index with the result of resolution.

--no-rerere-autoupdate is a good way to double-check what rerere did and catch potential

mismerges, before committing the result to the index with a separate git add.

SEQUENCER SUBCOMMANDS
--continue

Continue the operation in progress using the information in .git/sequencer. Can be used to

continue after resolving conflicts in a failed cherry-pick or revert.

--skip

Skip the current commit and continue with the rest of the sequence.

--quit

Forget about the current operation in progress. Can be used to clear the sequencer state after a

failed cherry-pick or revert.

--abort

Cancel the operation and return to the pre-sequence state.

EXAMPLES
git cherry-pick master

Apply the change introduced by the commit at the tip of the master branch and create a new

commit with this change.

git cherry-pick ..master, git cherry-pick ^HEAD master

GIT-CHERRY-PICK(1) Git Manual GIT-CHERRY-PICK(1)

Git 2.45.2 2024-05-30 GIT-CHERRY-PICK(1)

Apply the changes introduced by all commits that are ancestors of master but not of HEAD to

produce new commits.

git cherry-pick maint next ^master, git cherry-pick maint master..next
Apply the changes introduced by all commits that are ancestors of maint or next, but not master or

any of its ancestors. Note that the latter does not mean maint and everything between master and

next; specifically, maint will not be used if it is included in master.

git cherry-pick master~4 master~2
Apply the changes introduced by the fifth and third last commits pointed to by master and create 2

new commits with these changes.

git cherry-pick -n master~1 next
Apply to the working tree and the index the changes introduced by the second last commit pointed

to by master and by the last commit pointed to by next, but do not create any commit with these

changes.

git cherry-pick --ff ..next
If history is linear and HEAD is an ancestor of next, update the working tree and advance the

HEAD pointer to match next. Otherwise, apply the changes introduced by those commits that are

in next but not HEAD to the current branch, creating a new commit for each new change.

git rev-list --reverse master -- README | git cherry-pick -n --stdin
Apply the changes introduced by all commits on the master branch that touched README to the

working tree and index, so the result can be inspected and made into a single new commit if

suitable.

The following sequence attempts to backport a patch, bails out because the code the patch applies to

has changed too much, and then tries again, this time exercising more care about matching up context

lines.

$ git cherry-pick topic^ (1)
$ git diff (2)
$ git cherry-pick --abort (3)
$ git cherry-pick -Xpatience topic^ (4)

1. apply the change that would be

shown by git show topic^. In this

example, the patch does not apply

GIT-CHERRY-PICK(1) Git Manual GIT-CHERRY-PICK(1)

Git 2.45.2 2024-05-30 GIT-CHERRY-PICK(1)

cleanly, so information about the

conflict is written to the index

and working tree and no new

commit results.

2. summarize changes to be

reconciled

3. cancel the cherry-pick. In other

words, return to the

pre-cherry-pick state, preserving

any local modifications you had in

the working tree.

4. try to apply the change introduced

by topic^ again, spending extra

time to avoid mistakes based on

incorrectly matching context lines.

SEE ALSO
git-revert(1)

GIT
Part of the git(1) suite

GIT-CHERRY-PICK(1) Git Manual GIT-CHERRY-PICK(1)

Git 2.45.2 2024-05-30 GIT-CHERRY-PICK(1)

