
NAME
git-cherry - Find commits yet to be applied to upstream

SYNOPSIS
git cherry [-v] [<upstream> [<head> [<limit>]]]

DESCRIPTION
Determine whether there are commits in <head>..<upstream> that are equivalent to those in the range

<limit>..<head>.

The equivalence test is based on the diff, after removing whitespace and line numbers. git-cherry

therefore detects when commits have been "copied" by means of git-cherry-pick(1), git-am(1) or git-
rebase(1).

Outputs the SHA1 of every commit in <limit>..<head>, prefixed with - for commits that have an

equivalent in <upstream>, and + for commits that do not.

OPTIONS
-v

Show the commit subjects next to the SHA1s.

<upstream>

Upstream branch to search for equivalent commits. Defaults to the upstream branch of HEAD.

<head>

Working branch; defaults to HEAD.

<limit>

Do not report commits up to (and including) limit.

EXAMPLES
Patch workflows

git-cherry is frequently used in patch-based workflows (see gitworkflows(7)) to determine if a series of

patches has been applied by the upstream maintainer. In such a workflow you might create and send a

topic branch like this:

$ git checkout -b topic origin/master

work and create some commits

$ git format-patch origin/master

GIT-CHERRY(1) Git Manual GIT-CHERRY(1)

Git 2.42.0 2023-08-21 GIT-CHERRY(1)

$ git send-email ... 00*

Later, you can see whether your changes have been applied by saying (still on topic):

$ git fetch # update your notion of origin/master

$ git cherry -v

Concrete example
In a situation where topic consisted of three commits, and the maintainer applied two of them, the

situation might look like:

$ git log --graph --oneline --decorate --boundary origin/master...topic

* 7654321 (origin/master) upstream tip commit

[... snip some other commits ...]

* cccc111 cherry-pick of C

* aaaa111 cherry-pick of A

[... snip a lot more that has happened ...]

| * cccc000 (topic) commit C

| * bbbb000 commit B

| * aaaa000 commit A

|/

o 1234567 branch point

In such cases, git-cherry shows a concise summary of what has yet to be applied:

$ git cherry origin/master topic

- cccc000... commit C

+ bbbb000... commit B

- aaaa000... commit A

Here, we see that the commits A and C (marked with -) can be dropped from your topic branch when

you rebase it on top of origin/master, while the commit B (marked with +) still needs to be kept so that

it will be sent to be applied to origin/master.

Using a limit
The optional <limit> is useful in cases where your topic is based on other work that is not in upstream.

GIT-CHERRY(1) Git Manual GIT-CHERRY(1)

Git 2.42.0 2023-08-21 GIT-CHERRY(1)

Expanding on the previous example, this might look like:

$ git log --graph --oneline --decorate --boundary origin/master...topic

* 7654321 (origin/master) upstream tip commit

[... snip some other commits ...]

* cccc111 cherry-pick of C

* aaaa111 cherry-pick of A

[... snip a lot more that has happened ...]

| * cccc000 (topic) commit C

| * bbbb000 commit B

| * aaaa000 commit A

| * 0000fff (base) unpublished stuff F

[... snip ...]

| * 0000aaa unpublished stuff A

|/

o 1234567 merge-base between upstream and topic

By specifying base as the limit, you can avoid listing commits between base and topic:

$ git cherry origin/master topic base

- cccc000... commit C

+ bbbb000... commit B

- aaaa000... commit A

SEE ALSO
git-patch-id(1)

GIT
Part of the git(1) suite

GIT-CHERRY(1) Git Manual GIT-CHERRY(1)

Git 2.42.0 2023-08-21 GIT-CHERRY(1)

