GIT-COMMIT-GRAPH(1) Git Manual GIT-COMMIT-GRAPH(1)

NAME
git-commit-graph - Write and verify Git commit-graph files

SYNOPSIS
git commit-graph verify [--object-dir <dir>] [--shallow] [--[no-]progress]
git commit-graph write [--object-dir <dir>] [--append]
[--split[=<strategy>]] [--reachable | --stdin-packs | --stdin-commitg]
[--changed-paths] [--[no-]max-new-filters <n>] [--[no-]progress|
<gplit options>

DESCRIPTION
Manage the serialized commit-graph file.

OPTIONS
--object-dir
Use given directory for the location of packfiles and commit-graph file. This parameter exists to
specify the location of an alternate that only has the objects directory, not afull .git directory. The
commit-graph file is expected to be in the <dir >/info directory and the packfiles are expected to be
in <dir>/pack. If the directory could not be made into an absolute path, or does not match any
known object directory, git commit-graph ... will exit with non-zero status.

--[no-]progress
Turn progress on/off explicitly. If neither is specified, progressis shown if standard error is
connected to aterminal.

COMMANDS
write
Write a commit-graph file based on the commits found in packfiles. If the config option
core.commitGraph is disabled, then this command will output a warning, then return success
without writing a commit-graph file.

With the --stdin-packs option, generate the new commit graph by walking objects only in the
specified pack-indexes. (Cannot be combined with --stdin-commits or --r eachable.)

With the --stdin-commits option, generate the new commit graph by walking commits starting at
the commits specified in stdin as alist of OIDsin hex, one OID per line. OIDs that resolve to
non-commits (either directly, or by peeling tags) are silently ignored. OIDs that are malformed, or
do not exist generate an error. (Cannot be combined with --stdin-packs or --reachable.)

Git 2.42.0 2023-08-21 GIT-COMMIT-GRAPH(1)

GIT-COMMIT-GRAPH(1) Git Manual GIT-COMMIT-GRAPH(1)

With the --r eachable option, generate the new commit graph by walking commits starting at all
refs. (Cannaot be combined with --stdin-commits or --stdin-packs.)

With the --append option, include all commits that are present in the existing commit-graph file.

With the --changed-paths option, compute and write information about the paths changed between
acommit and itsfirst parent. This operation can take a while on large repositories. It provides
significant performance gains for getting history of adirectory or afile with git log -- <path>. If
this option is given, future commit-graph writes will automatically assume that this option was
intended. Use --no-changed-pathsto stop storing this data.

With the --max-new-filter ss<n> option, generate at most n new Bloom filters (if --changed-paths
is specified). If nis-1, no limit is enforced. Only commits present in the new layer count against
thislimit. To retroactively compute Bloom filters over earlier layers, it is advised to use
--gplit=replace. Overrides the commitGraph.maxNewFilter s configuration.

With the --split[=<strategy>] option, write the commit-graph as a chain of multiple commit-graph
files stored in <dir >/info/commit-gr aphs. Commit-graph layers are merged based on the strategy
and other splitting options. The new commits not already in the commit-graph are added in anew
"tip" file. Thisfile is merged with the existing file if the following merge conditions are met:

;)

--gplit=no-mer ge is specified, amerge is never performed, and the remaining options are ignored.
--split=r eplace overwrites the existing chain with anew one. A bare --split defers to the remaining
options. (Note that merging a chain of commit graphs replaces the existing chain with alength-1
chain where the first and only incremental holds the entire graph).

o

--size-multiple=<X> is not specified, let X equal 2. If the new tip file would have N commits and the
previoustip hasM commits and X times N is greater than M, instead merge the two filesinto a
singlefile.

o
--max-commits=<M > is specified with M a positive integer, and the new tip file would have more
than M commits, then instead merge the new tip with the previoustip.

Finaly, if --expire-time=<datetime> is not specified, let datetime be the current time. After writing

the split commit-graph, delete all unused commit-graph whose modified times are older than
datetime.

Git2.42.0 2023-08-21 GIT-COMMIT-GRAPH(1)

GIT-COMMIT-GRAPH(1) Git Manual GIT-COMMIT-GRAPH(1)

verify
Read the commit-graph file and verify its contents against the object database. Used to check for
corrupted data.

With the --shallow option, only check the tip commit-graph file in a chain of split commit-graphs.
EXAMPLES
®
a commit-graph file for the packed commitsin your local .git directory.
$ git commit-graph write
®
acommit-graph file, extending the current commit-graph file using commitsin <pack-index>.
$ echo <pack-index> | git commit-graph write --stdin-packs
o
a commit-graph file containing al reachable commits.
$ git show-ref -s| git commit-graph write --stdin-commits
®
a commit-graph file containing all commits in the current commit-graph file along with those reachable
from HEAD.
$ git rev-parse HEAD | git commit-graph write --stdin-commits --append
CONFIGURATION
Everything below thislinein this section is selectively included from the git-config(1) documentation.
The content is the same as what’ s found there:
commitGraph.generationVersion
Specifies the type of generation number version to use when writing or reading the commit-graph

file. If version 1 is specified, then the corrected commit dates will not be written or read. Defaults
to 2.

Git 2.42.0 2023-08-21 GIT-COMMIT-GRAPH(1)

GIT-COMMIT-GRAPH(1) Git Manual GIT-COMMIT-GRAPH(1)

commitGraph.maxNewFilters
Specifies the default value for the --max-new-filters option of git commit-graph write (c.f., git-
commit-graph(1)).

commitGraph.readChangedPaths
If true, then git will use the changed-path Bloom filters in the commit-graph file (if it exists, and

they are present). Defaults to true. See git-commit-graph(1) for more information.

FILE FORMAT
see gitformat-commit-graph(5).

GIT
Part of the git(1) suite

Git 2.42.0 2023-08-21 GIT-COMMIT-GRAPH(1)

