
NAME
git-commit-graph - Write and verify Git commit-graph files

SYNOPSIS
git commit-graph verify [--object-dir <dir>] [--shallow] [--[no-]progress]

git commit-graph write [--object-dir <dir>] [--append]

[--split[=<strategy>]] [--reachable | --stdin-packs | --stdin-commits]

[--changed-paths] [--[no-]max-new-filters <n>] [--[no-]progress]

<split options>

DESCRIPTION
Manage the serialized commit-graph file.

OPTIONS
--object-dir

Use given directory for the location of packfiles and commit-graph file. This parameter exists to

specify the location of an alternate that only has the objects directory, not a full .git directory. The

commit-graph file is expected to be in the <dir>/info directory and the packfiles are expected to be

in <dir>/pack. If the directory could not be made into an absolute path, or does not match any

known object directory, git commit-graph ... will exit with non-zero status.

--[no-]progress

Turn progress on/off explicitly. If neither is specified, progress is shown if standard error is

connected to a terminal.

COMMANDS
write

Write a commit-graph file based on the commits found in packfiles. If the config option

core.commitGraph is disabled, then this command will output a warning, then return success

without writing a commit-graph file.

With the --stdin-packs option, generate the new commit graph by walking objects only in the

specified pack-indexes. (Cannot be combined with --stdin-commits or --reachable.)

With the --stdin-commits option, generate the new commit graph by walking commits starting at

the commits specified in stdin as a list of OIDs in hex, one OID per line. OIDs that resolve to

non-commits (either directly, or by peeling tags) are silently ignored. OIDs that are malformed, or

do not exist generate an error. (Cannot be combined with --stdin-packs or --reachable.)

GIT-COMMIT-GRAPH(1) Git Manual GIT-COMMIT-GRAPH(1)

Git 2.42.0 2023-08-21 GIT-COMMIT-GRAPH(1)

With the --reachable option, generate the new commit graph by walking commits starting at all

refs. (Cannot be combined with --stdin-commits or --stdin-packs.)

With the --append option, include all commits that are present in the existing commit-graph file.

With the --changed-paths option, compute and write information about the paths changed between

a commit and its first parent. This operation can take a while on large repositories. It provides

significant performance gains for getting history of a directory or a file with git log -- <path>. If

this option is given, future commit-graph writes will automatically assume that this option was

intended. Use --no-changed-paths to stop storing this data.

With the --max-new-filters=<n> option, generate at most n new Bloom filters (if --changed-paths
is specified). If n is -1, no limit is enforced. Only commits present in the new layer count against

this limit. To retroactively compute Bloom filters over earlier layers, it is advised to use

--split=replace. Overrides the commitGraph.maxNewFilters configuration.

With the --split[=<strategy>] option, write the commit-graph as a chain of multiple commit-graph

files stored in <dir>/info/commit-graphs. Commit-graph layers are merged based on the strategy

and other splitting options. The new commits not already in the commit-graph are added in a new

"tip" file. This file is merged with the existing file if the following merge conditions are met:

+o

--split=no-merge is specified, a merge is never performed, and the remaining options are ignored.

--split=replace overwrites the existing chain with a new one. A bare --split defers to the remaining

options. (Note that merging a chain of commit graphs replaces the existing chain with a length-1

chain where the first and only incremental holds the entire graph).

+o

--size-multiple=<X> is not specified, let X equal 2. If the new tip file would have N commits and the

previous tip has M commits and X times N is greater than M, instead merge the two files into a

single file.

+o

--max-commits=<M> is specified with M a positive integer, and the new tip file would have more

than M commits, then instead merge the new tip with the previous tip.

Finally, if --expire-time=<datetime> is not specified, let datetime be the current time. After writing

the split commit-graph, delete all unused commit-graph whose modified times are older than

datetime.

GIT-COMMIT-GRAPH(1) Git Manual GIT-COMMIT-GRAPH(1)

Git 2.42.0 2023-08-21 GIT-COMMIT-GRAPH(1)

verify

Read the commit-graph file and verify its contents against the object database. Used to check for

corrupted data.

With the --shallow option, only check the tip commit-graph file in a chain of split commit-graphs.

EXAMPLES
+o

a commit-graph file for the packed commits in your local .git directory.

$ git commit-graph write

+o

a commit-graph file, extending the current commit-graph file using commits in <pack-index>.

$ echo <pack-index> | git commit-graph write --stdin-packs

+o

a commit-graph file containing all reachable commits.

$ git show-ref -s | git commit-graph write --stdin-commits

+o

a commit-graph file containing all commits in the current commit-graph file along with those reachable

from HEAD.

$ git rev-parse HEAD | git commit-graph write --stdin-commits --append

CONFIGURATION
Everything below this line in this section is selectively included from the git-config(1) documentation.

The content is the same as what’s found there:

commitGraph.generationVersion

Specifies the type of generation number version to use when writing or reading the commit-graph

file. If version 1 is specified, then the corrected commit dates will not be written or read. Defaults

to 2.

GIT-COMMIT-GRAPH(1) Git Manual GIT-COMMIT-GRAPH(1)

Git 2.42.0 2023-08-21 GIT-COMMIT-GRAPH(1)

commitGraph.maxNewFilters

Specifies the default value for the --max-new-filters option of git commit-graph write (c.f., git-
commit-graph(1)).

commitGraph.readChangedPaths

If true, then git will use the changed-path Bloom filters in the commit-graph file (if it exists, and

they are present). Defaults to true. See git-commit-graph(1) for more information.

FILE FORMAT
see gitformat-commit-graph(5).

GIT
Part of the git(1) suite

GIT-COMMIT-GRAPH(1) Git Manual GIT-COMMIT-GRAPH(1)

Git 2.42.0 2023-08-21 GIT-COMMIT-GRAPH(1)

