
NAME
git-commit-tree - Create a new commit object

SYNOPSIS
git commit-tree <tree> [(-p <parent>)...]

git commit-tree [(-p <parent>)...] [-S[<keyid>]] [(-m <message>)...]

[(-F <file>)...] <tree>

DESCRIPTION
This is usually not what an end user wants to run directly. See git-commit(1) instead.

Creates a new commit object based on the provided tree object and emits the new commit object id on

stdout. The log message is read from the standard input, unless -m or -F options are given.

The -m and -F options can be given any number of times, in any order. The commit log message will

be composed in the order in which the options are given.

A commit object may have any number of parents. With exactly one parent, it is an ordinary commit.

Having more than one parent makes the commit a merge between several lines of history. Initial (root)

commits have no parents.

While a tree represents a particular directory state of a working directory, a commit represents that state

in "time", and explains how to get there.

Normally a commit would identify a new "HEAD" state, and while Git doesn’t care where you save the

note about that state, in practice we tend to just write the result to the file that is pointed at by

.git/HEAD, so that we can always see what the last committed state was.

OPTIONS
<tree>

An existing tree object.

-p <parent>

Each -p indicates the id of a parent commit object.

-m <message>

A paragraph in the commit log message. This can be given more than once and each <message>

becomes its own paragraph.

GIT-COMMIT-TREE(1) Git Manual GIT-COMMIT-TREE(1)

Git 2.42.0 2023-08-21 GIT-COMMIT-TREE(1)



-F <file>

Read the commit log message from the given file. Use - to read from the standard input. This can

be given more than once and the content of each file becomes its own paragraph.

-S[<keyid>], --gpg-sign[=<keyid>], --no-gpg-sign

GPG-sign commits. The keyid argument is optional and defaults to the committer identity; if

specified, it must be stuck to the option without a space. --no-gpg-sign is useful to countermand a

--gpg-sign option given earlier on the command line.

COMMIT INFORMATION
A commit encapsulates:

+o

parent object ids

+o

name, email and date

+o

name and email and the commit time.

A commit comment is read from stdin. If a changelog entry is not provided via "<" redirection, git

commit-tree will just wait for one to be entered and terminated with ^D.

DATE FORMATS
The GIT_AUTHOR_DATE and GIT_COMMITTER_DATE environment variables support the

following date formats:

Git internal format

It is <unix-timestamp> <time-zone-offset>, where <unix-timestamp> is the number of seconds

since the UNIX epoch. <time-zone-offset> is a positive or negative offset from UTC. For

example CET (which is 1 hour ahead of UTC) is +0100.

RFC 2822

The standard email format as described by RFC 2822, for example Thu, 07 Apr 2005 22:13:13
+0200.

ISO 8601

Time and date specified by the ISO 8601 standard, for example 2005-04-07T22:13:13. The parser

accepts a space instead of the T character as well. Fractional parts of a second will be ignored, for

GIT-COMMIT-TREE(1) Git Manual GIT-COMMIT-TREE(1)

Git 2.42.0 2023-08-21 GIT-COMMIT-TREE(1)



example 2005-04-07T22:13:13.019 will be treated as

2005-04-07T22:13:13.

Note
In addition, the date part is accepted in the following formats: YYYY.MM.DD,

MM/DD/YYYY and DD.MM.YYYY.

DISCUSSION
Git is to some extent character encoding agnostic.

+o

contents of the blob objects are uninterpreted sequences of bytes. There is no encoding translation at the

core level.

+o

names are encoded in UTF-8 normalization form C. This applies to tree objects, the index file, ref names,

as well as path names in command line arguments, environment variables and config files (.git/config (see

git-config(1)), gitignore(5), gitattributes(5) and gitmodules(5)).

Note that Git at the core level treats path names simply as sequences of non-NUL bytes, there are no path

name encoding conversions (except on Mac and Windows). Therefore, using non-ASCII path names will

mostly work even on platforms and file systems that use legacy extended ASCII encodings. However,

repositories created on such systems will not work properly on UTF-8-based systems (e.g. Linux, Mac,

Windows) and vice versa. Additionally, many Git-based tools simply assume path names to be UTF-8 and

will fail to display other encodings correctly.

+o

log messages are typically encoded in UTF-8, but other extended ASCII encodings are also supported.

This includes ISO-8859-x, CP125x and many others, but not UTF-16/32, EBCDIC and CJK multi-byte

encodings (GBK, Shift-JIS, Big5, EUC-x, CP9xx etc.).

Although we encourage that the commit log messages are encoded in UTF-8, both the core and Git

Porcelain are designed not to force UTF-8 on projects. If all participants of a particular project find it

more convenient to use legacy encodings, Git does not forbid it. However, there are a few things to

keep in mind.

1.

commit and git commit-tree issues a warning if the commit log message given to it does not look like a

valid UTF-8 string, unless you explicitly say your project uses a legacy encoding. The way to say this is to

have i18n.commitEncoding in .git/config file, like this:

GIT-COMMIT-TREE(1) Git Manual GIT-COMMIT-TREE(1)

Git 2.42.0 2023-08-21 GIT-COMMIT-TREE(1)



[i18n]

commitEncoding = ISO-8859-1

Commit objects created with the above setting record the value of i18n.commitEncoding in its

encoding header. This is to help other people who look at them later. Lack of this header implies

that the commit log message is encoded in UTF-8.

2.

log, git show, git blame and friends look at the encoding header of a commit object, and try to re-code the

log message into UTF-8 unless otherwise specified. You can specify the desired output encoding with

i18n.logOutputEncoding in .git/config file, like this:

[i18n]

logOutputEncoding = ISO-8859-1

If you do not have this configuration variable, the value of i18n.commitEncoding is used instead.

Note that we deliberately chose not to re-code the commit log message when a commit is made to force

UTF-8 at the commit object level, because re-coding to UTF-8 is not necessarily a reversible operation.

FILES
/etc/mailname

SEE ALSO
git-write-tree(1) git-commit(1)

GIT
Part of the git(1) suite

GIT-COMMIT-TREE(1) Git Manual GIT-COMMIT-TREE(1)

Git 2.42.0 2023-08-21 GIT-COMMIT-TREE(1)


