
NAME
git-commit - Record changes to the repository

SYNOPSIS
git commit [-a | --interactive | --patch] [-s] [-v] [-u<mode>] [--amend]

[--dry-run] [(-c | -C | --squash) <commit> | --fixup [(amend|reword):]<commit>)]

[-F <file> | -m <msg>] [--reset-author] [--allow-empty]

[--allow-empty-message] [--no-verify] [-e] [--author=<author>]

[--date=<date>] [--cleanup=<mode>] [--[no-]status]

[-i | -o] [--pathspec-from-file=<file> [--pathspec-file-nul]]

[(--trailer <token>[(=|:)<value>])...] [-S[<keyid>]]

[--] [<pathspec>...]

DESCRIPTION
Create a new commit containing the current contents of the index and the given log message describing

the changes. The new commit is a direct child of HEAD, usually the tip of the current branch, and the

branch is updated to point to it (unless no branch is associated with the working tree, in which case

HEAD is "detached" as described in git-checkout(1)).

The content to be committed can be specified in several ways:

1.

using git-add(1) to incrementally "add" changes to the index before using the commit command (Note:

even modified files must be "added");

2.

using git-rm(1) to remove files from the working tree and the index, again before using the commit

command;

3.

listing files as arguments to the commit command (without --interactive or --patch switch), in which case

the commit will ignore changes staged in the index, and instead record the current content of the listed

files (which must already be known to Git);

4.

using the -a switch with the commit command to automatically "add" changes from all known files (i.e.

all files that are already listed in the index) and to automatically "rm" files in the index that have been

removed from the working tree, and then perform the actual commit;

GIT-COMMIT(1) Git Manual GIT-COMMIT(1)

Git 2.42.0 2023-08-21 GIT-COMMIT(1)

5.

using the --interactive or --patch switches with the commit command to decide one by one which files or

hunks should be part of the commit in addition to contents in the index, before finalizing the operation.

See the "Interactive Mode" section of git-add(1) to learn how to operate these modes.

The --dry-run option can be used to obtain a summary of what is included by any of the above for the

next commit by giving the same set of parameters (options and paths).

If you make a commit and then find a mistake immediately after that, you can recover from it with git

reset.

OPTIONS
-a, --all

Tell the command to automatically stage files that have been modified and deleted, but new files

you have not told Git about are not affected.

-p, --patch

Use the interactive patch selection interface to choose which changes to commit. See git-add(1)

for details.

-C <commit>, --reuse-message=<commit>

Take an existing commit object, and reuse the log message and the authorship information

(including the timestamp) when creating the commit.

-c <commit>, --reedit-message=<commit>

Like -C, but with -c the editor is invoked, so that the user can further edit the commit message.

--fixup=[(amend|reword):]<commit>

Create a new commit which "fixes up" <commit> when applied with git rebase --autosquash.

Plain --fixup=<commit> creates a "fixup!" commit which changes the content of <commit> but

leaves its log message untouched. --fixup=amend:<commit> is similar but creates an "amend!"

commit which also replaces the log message of <commit> with the log message of the "amend!"

commit. --fixup=reword:<commit> creates an "amend!" commit which replaces the log message

of <commit> with its own log message but makes no changes to the content of <commit>.

The commit created by plain --fixup=<commit> has a subject composed of "fixup!" followed by

the subject line from <commit>, and is recognized specially by git rebase --autosquash. The -m
option may be used to supplement the log message of the created commit, but the additional

commentary will be thrown away once the "fixup!" commit is squashed into <commit> by git
rebase --autosquash.

GIT-COMMIT(1) Git Manual GIT-COMMIT(1)

Git 2.42.0 2023-08-21 GIT-COMMIT(1)

The commit created by --fixup=amend:<commit> is similar but its subject is instead

prefixed with "amend!". The log message of <commit> is copied into the log message of

the "amend!" commit and opened in an editor so it can be refined. When git rebase
--autosquash squashes the "amend!" commit into <commit>, the log message of <commit>
is replaced by the refined log message from the "amend!" commit. It is an error for the

"amend!" commit’s log message to be empty unless --allow-empty-message is specified.

--fixup=reword:<commit> is shorthand for --fixup=amend:<commit> --only. It creates an

"amend!" commit with only a log message (ignoring any changes staged in the index).

When squashed by git rebase --autosquash, it replaces the log message of <commit>
without making any other changes.

Neither "fixup!" nor "amend!" commits change authorship of <commit> when applied by

git rebase --autosquash. See git-rebase(1) for details.

--squash=<commit>

Construct a commit message for use with rebase --autosquash. The commit message subject line is

taken from the specified commit with a prefix of "squash! ". Can be used with additional commit

message options (-m/-c/-C/-F). See git-rebase(1) for details.

--reset-author

When used with -C/-c/--amend options, or when committing after a conflicting cherry-pick,

declare that the authorship of the resulting commit now belongs to the committer. This also

renews the author timestamp.

--short

When doing a dry-run, give the output in the short-format. See git-status(1) for details. Implies

--dry-run.

--branch

Show the branch and tracking info even in short-format.

--porcelain

When doing a dry-run, give the output in a porcelain-ready format. See git-status(1) for details.

Implies --dry-run.

--long

When doing a dry-run, give the output in the long-format. Implies --dry-run.

-z, --null

GIT-COMMIT(1) Git Manual GIT-COMMIT(1)

Git 2.42.0 2023-08-21 GIT-COMMIT(1)

When showing short or porcelain status output, print the filename verbatim and terminate the

entries with NUL, instead of LF. If no format is given, implies the --porcelain output format.

Without the -z option, filenames with "unusual" characters are quoted as explained for the

configuration variable core.quotePath (see git-config(1)).

-F <file>, --file=<file>

Take the commit message from the given file. Use - to read the message from the standard input.

--author=<author>

Override the commit author. Specify an explicit author using the standard A U Thor
<author@example.com> format. Otherwise <author> is assumed to be a pattern and is used to

search for an existing commit by that author (i.e. rev-list --all -i --author=<author>); the commit

author is then copied from the first such commit found.

--date=<date>

Override the author date used in the commit.

-m <msg>, --message=<msg>

Use the given <msg> as the commit message. If multiple -m options are given, their values are

concatenated as separate paragraphs.

The -m option is mutually exclusive with -c, -C, and -F.

-t <file>, --template=<file>

When editing the commit message, start the editor with the contents in the given file. The

commit.template configuration variable is often used to give this option implicitly to the

command. This mechanism can be used by projects that want to guide participants with some

hints on what to write in the message in what order. If the user exits the editor without editing the

message, the commit is aborted. This has no effect when a message is given by other means, e.g.

with the -m or -F options.

-s, --signoff, --no-signoff

Add a Signed-off-by trailer by the committer at the end of the commit log message. The meaning

of a signoff depends on the project to which you’re committing. For example, it may certify that

the committer has the rights to submit the work under the project’s license or agrees to some

contributor representation, such as a Developer Certificate of Origin. (See

http://developercertificate.org for the one used by the Linux kernel and Git projects.) Consult the

documentation or leadership of the project to which you’re contributing to understand how the

signoffs are used in that project.

GIT-COMMIT(1) Git Manual GIT-COMMIT(1)

Git 2.42.0 2023-08-21 GIT-COMMIT(1)

The --no-signoff option can be used to countermand an earlier --signoff option on the command

line.

--trailer <token>[(=|:)<value>]

Specify a (<token>, <value>) pair that should be applied as a trailer. (e.g. git commit --trailer
"Signed-off-by:C O Mitter \ <committer@example.com>" --trailer "Helped-by:C O Mitter \
<committer@example.com>" will add the "Signed-off-by" trailer and the "Helped-by" trailer to

the commit message.) The trailer.* configuration variables (git-interpret-trailers(1)) can be used to

define if a duplicated trailer is omitted, where in the run of trailers each trailer would appear, and

other details.

-n, --[no-]verify

By default, the pre-commit and commit-msg hooks are run. When any of --no-verify or -n is

given, these are bypassed. See also githooks(5).

--allow-empty

Usually recording a commit that has the exact same tree as its sole parent commit is a mistake, and

the command prevents you from making such a commit. This option bypasses the safety, and is

primarily for use by foreign SCM interface scripts.

--allow-empty-message

Like --allow-empty this command is primarily for use by foreign SCM interface scripts. It allows

you to create a commit with an empty commit message without using plumbing commands like

git-commit-tree(1).

--cleanup=<mode>

This option determines how the supplied commit message should be cleaned up before

committing. The <mode> can be strip, whitespace, verbatim, scissors or default.

strip

Strip leading and trailing empty lines, trailing whitespace, commentary and collapse

consecutive empty lines.

whitespace

Same as strip except #commentary is not removed.

verbatim

Do not change the message at all.

scissors

GIT-COMMIT(1) Git Manual GIT-COMMIT(1)

Git 2.42.0 2023-08-21 GIT-COMMIT(1)

Same as whitespace except that everything from (and including) the line found below is

truncated, if the message is to be edited. "#" can be customized with core.commentChar.

------------------------ >8 ------------------------

default

Same as strip if the message is to be edited. Otherwise whitespace.

The default can be changed by the commit.cleanup configuration variable (see git-config(1)).

-e, --edit

The message taken from file with -F, command line with -m, and from commit object with -C are

usually used as the commit log message unmodified. This option lets you further edit the message

taken from these sources.

--no-edit

Use the selected commit message without launching an editor. For example, git commit --amend
--no-edit amends a commit without changing its commit message.

--amend

Replace the tip of the current branch by creating a new commit. The recorded tree is prepared as

usual (including the effect of the -i and -o options and explicit pathspec), and the message from

the original commit is used as the starting point, instead of an empty message, when no other

message is specified from the command line via options such as -m, -F, -c, etc. The new commit

has the same parents and author as the current one (the --reset-author option can countermand

this).

It is a rough equivalent for:

$ git reset --soft HEAD^

$... do something else to come up with the right tree ...

$ git commit -c ORIG_HEAD

but can be used to amend a merge commit.

You should understand the implications of rewriting history if you amend a commit that has

already been published. (See the "RECOVERING FROM UPSTREAM REBASE" section in git-
rebase(1).)

--no-post-rewrite

GIT-COMMIT(1) Git Manual GIT-COMMIT(1)

Git 2.42.0 2023-08-21 GIT-COMMIT(1)

Bypass the post-rewrite hook.

-i, --include

Before making a commit out of staged contents so far, stage the contents of paths given on the

command line as well. This is usually not what you want unless you are concluding a conflicted

merge.

-o, --only

Make a commit by taking the updated working tree contents of the paths specified on the

command line, disregarding any contents that have been staged for other paths. This is the default

mode of operation of git commit if any paths are given on the command line, in which case this

option can be omitted. If this option is specified together with --amend, then no paths need to be

specified, which can be used to amend the last commit without committing changes that have

already been staged. If used together with --allow-empty paths are also not required, and an empty

commit will be created.

--pathspec-from-file=<file>

Pathspec is passed in <file> instead of commandline args. If <file> is exactly - then standard input

is used. Pathspec elements are separated by LF or CR/LF. Pathspec elements can be quoted as

explained for the configuration variable core.quotePath (see git-config(1)). See also

--pathspec-file-nul and global --literal-pathspecs.

--pathspec-file-nul

Only meaningful with --pathspec-from-file. Pathspec elements are separated with NUL character

and all other characters are taken literally (including newlines and quotes).

-u[<mode>], --untracked-files[=<mode>]

Show untracked files.

The mode parameter is optional (defaults to all), and is used to specify the handling of untracked

files; when -u is not used, the default is normal, i.e. show untracked files and directories.

The possible options are:

+o

- Show no untracked files

+o

- Shows untracked files and directories

GIT-COMMIT(1) Git Manual GIT-COMMIT(1)

Git 2.42.0 2023-08-21 GIT-COMMIT(1)

+o

- Also shows individual files in untracked directories.

The default can be changed using the status.showUntrackedFiles configuration variable

documented in git-config(1).

-v, --verbose

Show unified diff between the HEAD commit and what would be committed at the bottom of the

commit message template to help the user describe the commit by reminding what changes the

commit has. Note that this diff output doesn’t have its lines prefixed with #. This diff will not be a

part of the commit message. See the commit.verbose configuration variable in git-config(1).

If specified twice, show in addition the unified diff between what would be committed and the

worktree files, i.e. the unstaged changes to tracked files.

-q, --quiet

Suppress commit summary message.

--dry-run

Do not create a commit, but show a list of paths that are to be committed, paths with local changes

that will be left uncommitted and paths that are untracked.

--status

Include the output of git-status(1) in the commit message template when using an editor to prepare

the commit message. Defaults to on, but can be used to override configuration variable

commit.status.

--no-status

Do not include the output of git-status(1) in the commit message template when using an editor to

prepare the default commit message.

-S[<keyid>], --gpg-sign[=<keyid>], --no-gpg-sign

GPG-sign commits. The keyid argument is optional and defaults to the committer identity; if

specified, it must be stuck to the option without a space. --no-gpg-sign is useful to countermand

both commit.gpgSign configuration variable, and earlier --gpg-sign.

--

Do not interpret any more arguments as options.

<pathspec>...

GIT-COMMIT(1) Git Manual GIT-COMMIT(1)

Git 2.42.0 2023-08-21 GIT-COMMIT(1)

When pathspec is given on the command line, commit the contents of the files that match the

pathspec without recording the changes already added to the index. The contents of these files are

also staged for the next commit on top of what have been staged before.

For more details, see the pathspec entry in gitglossary(7).

EXAMPLES
When recording your own work, the contents of modified files in your working tree are temporarily

stored to a staging area called the "index" with git add. A file can be reverted back, only in the index

but not in the working tree, to that of the last commit with git restore --staged <file>, which effectively

reverts git add and prevents the changes to this file from participating in the next commit. After

building the state to be committed incrementally with these commands, git commit (without any

pathname parameter) is used to record what has been staged so far. This is the most basic form of the

command. An example:

$ edit hello.c

$ git rm goodbye.c

$ git add hello.c

$ git commit

Instead of staging files after each individual change, you can tell git commit to notice the changes to

the files whose contents are tracked in your working tree and do corresponding git add and git rm for

you. That is, this example does the same as the earlier example if there is no other change in your

working tree:

$ edit hello.c

$ rm goodbye.c

$ git commit -a

The command git commit -a first looks at your working tree, notices that you have modified hello.c and

removed goodbye.c, and performs necessary git add and git rm for you.

After staging changes to many files, you can alter the order the changes are recorded in, by giving

pathnames to git commit. When pathnames are given, the command makes a commit that only records

the changes made to the named paths:

$ edit hello.c hello.h

$ git add hello.c hello.h

GIT-COMMIT(1) Git Manual GIT-COMMIT(1)

Git 2.42.0 2023-08-21 GIT-COMMIT(1)

$ edit Makefile

$ git commit Makefile

This makes a commit that records the modification to Makefile. The changes staged for hello.c and

hello.h are not included in the resulting commit. However, their changes are not lost -- they are still

staged and merely held back. After the above sequence, if you do:

$ git commit

this second commit would record the changes to hello.c and hello.h as expected.

After a merge (initiated by git merge or git pull) stops because of conflicts, cleanly merged paths are

already staged to be committed for you, and paths that conflicted are left in unmerged state. You would

have to first check which paths are conflicting with git status and after fixing them manually in your

working tree, you would stage the result as usual with git add:

$ git status | grep unmerged

unmerged: hello.c

$ edit hello.c

$ git add hello.c

After resolving conflicts and staging the result, git ls-files -u would stop mentioning the conflicted

path. When you are done, run git commit to finally record the merge:

$ git commit

As with the case to record your own changes, you can use -a option to save typing. One difference is

that during a merge resolution, you cannot use git commit with pathnames to alter the order the

changes are committed, because the merge should be recorded as a single commit. In fact, the

command refuses to run when given pathnames (but see -i option).

COMMIT INFORMATION
Author and committer information is taken from the following environment variables, if set:

GIT_AUTHOR_NAME

GIT_AUTHOR_EMAIL

GIT-COMMIT(1) Git Manual GIT-COMMIT(1)

Git 2.42.0 2023-08-21 GIT-COMMIT(1)

GIT_AUTHOR_DATE

GIT_COMMITTER_NAME

GIT_COMMITTER_EMAIL

GIT_COMMITTER_DATE

(nb "<", ">" and "\n"s are stripped)

The author and committer names are by convention some form of a personal name (that is, the name by

which other humans refer to you), although Git does not enforce or require any particular form.

Arbitrary Unicode may be used, subject to the constraints listed above. This name has no effect on

authentication; for that, see the credential.username variable in git-config(1).

In case (some of) these environment variables are not set, the information is taken from the

configuration items user.name and user.email, or, if not present, the environment variable EMAIL, or,

if that is not set, system user name and the hostname used for outgoing mail (taken from /etc/mailname
and falling back to the fully qualified hostname when that file does not exist).

The author.name and committer.name and their corresponding email options override user.name and

user.email if set and are overridden themselves by the environment variables.

The typical usage is to set just the user.name and user.email variables; the other options are provided

for more complex use cases.

DATE FORMATS
The GIT_AUTHOR_DATE and GIT_COMMITTER_DATE environment variables support the

following date formats:

Git internal format

It is <unix-timestamp> <time-zone-offset>, where <unix-timestamp> is the number of seconds

since the UNIX epoch. <time-zone-offset> is a positive or negative offset from UTC. For

example CET (which is 1 hour ahead of UTC) is +0100.

RFC 2822

The standard email format as described by RFC 2822, for example Thu, 07 Apr 2005 22:13:13
+0200.

ISO 8601

Time and date specified by the ISO 8601 standard, for example 2005-04-07T22:13:13. The parser

accepts a space instead of the T character as well. Fractional parts of a second will be ignored, for

example 2005-04-07T22:13:13.019 will be treated as 2005-04-07T22:13:13.

GIT-COMMIT(1) Git Manual GIT-COMMIT(1)

Git 2.42.0 2023-08-21 GIT-COMMIT(1)

Note
In addition, the date part is accepted in the following formats: YYYY.MM.DD,

MM/DD/YYYY and DD.MM.YYYY.

In addition to recognizing all date formats above, the --date option will also try to make sense of other,

more human-centric date formats, such as relative dates like "yesterday" or "last Friday at noon".

DISCUSSION
Though not required, it’s a good idea to begin the commit message with a single short (less than 50

character) line summarizing the change, followed by a blank line and then a more thorough description.

The text up to the first blank line in a commit message is treated as the commit title, and that title is

used throughout Git. For example, git-format-patch(1) turns a commit into email, and it uses the title on

the Subject line and the rest of the commit in the body.

Git is to some extent character encoding agnostic.

+o

contents of the blob objects are uninterpreted sequences of bytes. There is no encoding translation at the

core level.

+o

names are encoded in UTF-8 normalization form C. This applies to tree objects, the index file, ref names,

as well as path names in command line arguments, environment variables and config files (.git/config (see

git-config(1)), gitignore(5), gitattributes(5) and gitmodules(5)).

Note that Git at the core level treats path names simply as sequences of non-NUL bytes, there are no path

name encoding conversions (except on Mac and Windows). Therefore, using non-ASCII path names will

mostly work even on platforms and file systems that use legacy extended ASCII encodings. However,

repositories created on such systems will not work properly on UTF-8-based systems (e.g. Linux, Mac,

Windows) and vice versa. Additionally, many Git-based tools simply assume path names to be UTF-8 and

will fail to display other encodings correctly.

+o

log messages are typically encoded in UTF-8, but other extended ASCII encodings are also supported.

This includes ISO-8859-x, CP125x and many others, but not UTF-16/32, EBCDIC and CJK multi-byte

encodings (GBK, Shift-JIS, Big5, EUC-x, CP9xx etc.).

Although we encourage that the commit log messages are encoded in UTF-8, both the core and Git

Porcelain are designed not to force UTF-8 on projects. If all participants of a particular project find it

more convenient to use legacy encodings, Git does not forbid it. However, there are a few things to

GIT-COMMIT(1) Git Manual GIT-COMMIT(1)

Git 2.42.0 2023-08-21 GIT-COMMIT(1)

keep in mind.

1.

commit and git commit-tree issues a warning if the commit log message given to it does not look like a

valid UTF-8 string, unless you explicitly say your project uses a legacy encoding. The way to say this is to

have i18n.commitEncoding in .git/config file, like this:

[i18n]

commitEncoding = ISO-8859-1

Commit objects created with the above setting record the value of i18n.commitEncoding in its

encoding header. This is to help other people who look at them later. Lack of this header implies

that the commit log message is encoded in UTF-8.

2.

log, git show, git blame and friends look at the encoding header of a commit object, and try to re-code the

log message into UTF-8 unless otherwise specified. You can specify the desired output encoding with

i18n.logOutputEncoding in .git/config file, like this:

[i18n]

logOutputEncoding = ISO-8859-1

If you do not have this configuration variable, the value of i18n.commitEncoding is used instead.

Note that we deliberately chose not to re-code the commit log message when a commit is made to force

UTF-8 at the commit object level, because re-coding to UTF-8 is not necessarily a reversible operation.

ENVIRONMENT AND CONFIGURATION VARIABLES
The editor used to edit the commit log message will be chosen from the GIT_EDITOR environment

variable, the core.editor configuration variable, the VISUAL environment variable, or the EDITOR
environment variable (in that order). See git-var(1) for details.

Everything above this line in this section isn’t included from the git-config(1) documentation. The

content that follows is the same as what’s found there:

commit.cleanup

This setting overrides the default of the --cleanup option in git commit. See git-commit(1) for

details. Changing the default can be useful when you always want to keep lines that begin with

comment character # in your log message, in which case you would do git config commit.cleanup
whitespace (note that you will have to remove the help lines that begin with # in the commit log

GIT-COMMIT(1) Git Manual GIT-COMMIT(1)

Git 2.42.0 2023-08-21 GIT-COMMIT(1)

template yourself, if you do this).

commit.gpgSign

A boolean to specify whether all commits should be GPG signed. Use of this option when doing

operations such as rebase can result in a large number of commits being signed. It may be

convenient to use an agent to avoid typing your GPG passphrase several times.

commit.status

A boolean to enable/disable inclusion of status information in the commit message template when

using an editor to prepare the commit message. Defaults to true.

commit.template

Specify the pathname of a file to use as the template for new commit messages.

commit.verbose

A boolean or int to specify the level of verbose with git commit. See git-commit(1).

HOOKS
This command can run commit-msg, prepare-commit-msg, pre-commit, post-commit and post-rewrite
hooks. See githooks(5) for more information.

FILES
$GIT_DIR/COMMIT_EDITMSG

This file contains the commit message of a commit in progress. If git commit exits due to an error

before creating a commit, any commit message that has been provided by the user (e.g., in an

editor session) will be available in this file, but will be overwritten by the next invocation of git
commit.

SEE ALSO
git-add(1), git-rm(1), git-mv(1), git-merge(1), git-commit-tree(1)

GIT
Part of the git(1) suite

GIT-COMMIT(1) Git Manual GIT-COMMIT(1)

Git 2.42.0 2023-08-21 GIT-COMMIT(1)

