
NAME
git-daemon - A really simple server for Git repositories

SYNOPSIS
git daemon [--verbose] [--syslog] [--export-all]

[--timeout=<n>] [--init-timeout=<n>] [--max-connections=<n>]

[--strict-paths] [--base-path=<path>] [--base-path-relaxed]

[--user-path | --user-path=<path>]

[--interpolated-path=<pathtemplate>]

[--reuseaddr] [--detach] [--pid-file=<file>]

[--enable=<service>] [--disable=<service>]

[--allow-override=<service>] [--forbid-override=<service>]

[--access-hook=<path>] [--[no-]informative-errors]

[--inetd |

[--listen=<host_or_ipaddr>] [--port=<n>]

[--user=<user> [--group=<group>]]]

[--log-destination=(stderr|syslog|none)]

[<directory>...]

DESCRIPTION
A really simple TCP Git daemon that normally listens on port "DEFAULT_GIT_PORT" aka 9418. It

waits for a connection asking for a service, and will serve that service if it is enabled.

It verifies that the directory has the magic file "git-daemon-export-ok", and it will refuse to export any

Git directory that hasn’t explicitly been marked for export this way (unless the --export-all parameter is

specified). If you pass some directory paths as git daemon arguments, the offers are limited to

repositories within those directories.

By default, only upload-pack service is enabled, which serves git fetch-pack and git ls-remote clients,

which are invoked from git fetch, git pull, and git clone.

This is ideally suited for read-only updates, i.e., pulling from Git repositories.

An upload-archive also exists to serve git archive.

OPTIONS
--strict-paths

Match paths exactly (i.e. don’t allow "/foo/repo" when the real path is "/foo/repo.git" or

"/foo/repo/.git") and don’t do user-relative paths. git daemon will refuse to start when this option

GIT-DAEMON(1) Git Manual GIT-DAEMON(1)

Git 2.42.0 2023-08-21 GIT-DAEMON(1)

is enabled and no directory arguments are provided.

--base-path=<path>

Remap all the path requests as relative to the given path. This is sort of "Git root" - if you run git

daemon with --base-path=/srv/git on example.com, then if you later try to pull

git://example.com/hello.git, git daemon will interpret the path as /srv/git/hello.git.

--base-path-relaxed

If --base-path is enabled and repo lookup fails, with this option git daemon will attempt to lookup

without prefixing the base path. This is useful for switching to --base-path usage, while still

allowing the old paths.

--interpolated-path=<pathtemplate>

To support virtual hosting, an interpolated path template can be used to dynamically construct

alternate paths. The template supports %H for the target hostname as supplied by the client but

converted to all lowercase, %CH for the canonical hostname, %IP for the server’s IP address, %P

for the port number, and %D for the absolute path of the named repository. After interpolation, the

path is validated against the directory list.

--export-all

Allow pulling from all directories that look like Git repositories (have the objects and refs

subdirectories), even if they do not have the git-daemon-export-ok file.

--inetd

Have the server run as an inetd service. Implies --syslog (may be overridden with

--log-destination=). Incompatible with --detach, --port, --listen, --user and --group options.

--listen=<host_or_ipaddr>

Listen on a specific IP address or hostname. IP addresses can be either an IPv4 address or an IPv6

address if supported. If IPv6 is not supported, then --listen=hostname is also not supported and

--listen must be given an IPv4 address. Can be given more than once. Incompatible with --inetd
option.

--port=<n>

Listen on an alternative port. Incompatible with --inetd option.

--init-timeout=<n>

Timeout (in seconds) between the moment the connection is established and the client request is

received (typically a rather low value, since that should be basically immediate).

GIT-DAEMON(1) Git Manual GIT-DAEMON(1)

Git 2.42.0 2023-08-21 GIT-DAEMON(1)

--timeout=<n>

Timeout (in seconds) for specific client sub-requests. This includes the time it takes for the server

to process the sub-request and the time spent waiting for the next client’s request.

--max-connections=<n>

Maximum number of concurrent clients, defaults to 32. Set it to zero for no limit.

--syslog

Short for --log-destination=syslog.

--log-destination=<destination>

Send log messages to the specified destination. Note that this option does not imply --verbose,

thus by default only error conditions will be logged. The <destination> must be one of:

stderr

Write to standard error. Note that if --detach is specified, the process disconnects from the

real standard error, making this destination effectively equivalent to none.

syslog

Write to syslog, using the git-daemon identifier.

none

Disable all logging.

The default destination is syslog if --inetd or --detach is specified, otherwise stderr.

--user-path, --user-path=<path>

Allow ~user notation to be used in requests. When specified with no parameter, requests to

git://host/~alice/foo is taken as a request to access foo repository in the home directory of user

alice. If --user-path=path is specified, the same request is taken as a request to access path/foo
repository in the home directory of user alice.

--verbose

Log details about the incoming connections and requested files.

--reuseaddr

Use SO_REUSEADDR when binding the listening socket. This allows the server to restart

without waiting for old connections to time out.

--detach

GIT-DAEMON(1) Git Manual GIT-DAEMON(1)

Git 2.42.0 2023-08-21 GIT-DAEMON(1)

Detach from the shell. Implies --syslog.

--pid-file=<file>

Save the process id in file. Ignored when the daemon is run under --inetd.

--user=<user>, --group=<group>

Change daemon’s uid and gid before entering the service loop. When only --user is given without

--group, the primary group ID for the user is used. The values of the option are given to

getpwnam(3) and getgrnam(3) and numeric IDs are not supported.

Giving these options is an error when used with --inetd; use the facility of inet daemon to achieve

the same before spawning git daemon if needed.

Like many programs that switch user id, the daemon does not reset environment variables such as

$HOME when it runs git programs, e.g. upload-pack and receive-pack. When using this option,

you may also want to set and export HOME to point at the home directory of <user> before

starting the daemon, and make sure any Git configuration files in that directory are readable by

<user>.

--enable=<service>, --disable=<service>

Enable/disable the service site-wide per default. Note that a service disabled site-wide can still be

enabled per repository if it is marked overridable and the repository enables the service with a

configuration item.

--allow-override=<service>, --forbid-override=<service>

Allow/forbid overriding the site-wide default with per repository configuration. By default, all the

services may be overridden.

--[no-]informative-errors

When informative errors are turned on, git-daemon will report more verbose errors to the client,

differentiating conditions like "no such repository" from "repository not exported". This is more

convenient for clients, but may leak information about the existence of unexported repositories.

When informative errors are not enabled, all errors report "access denied" to the client. The

default is --no-informative-errors.

--access-hook=<path>

Every time a client connects, first run an external command specified by the <path> with service

name (e.g. "upload-pack"), path to the repository, hostname (%H), canonical hostname (%CH), IP

address (%IP), and TCP port (%P) as its command-line arguments. The external command can

decide to decline the service by exiting with a non-zero status (or to allow it by exiting with a zero

GIT-DAEMON(1) Git Manual GIT-DAEMON(1)

Git 2.42.0 2023-08-21 GIT-DAEMON(1)

status). It can also look at the $REMOTE_ADDR and $REMOTE_PORT environment variables

to learn about the requestor when making this decision.

The external command can optionally write a single line to its standard output to be sent to the

requestor as an error message when it declines the service.

<directory>

The remaining arguments provide a list of directories. If any directories are specified, then the

git-daemon process will serve a requested directory only if it is contained in one of these

directories. If --strict-paths is specified, then the requested directory must match one of these

directories exactly.

SERVICES
These services can be globally enabled/disabled using the command-line options of this command. If

finer-grained control is desired (e.g. to allow git archive to be run against only in a few selected

repositories the daemon serves), the per-repository configuration file can be used to enable or disable

them.

upload-pack

This serves git fetch-pack and git ls-remote clients. It is enabled by default, but a repository can

disable it by setting daemon.uploadpack configuration item to false.

upload-archive

This serves git archive --remote. It is disabled by default, but a repository can enable it by setting

daemon.uploadarch configuration item to true.

receive-pack

This serves git send-pack clients, allowing anonymous push. It is disabled by default, as there is

no authentication in the protocol (in other words, anybody can push anything into the repository,

including removal of refs). This is solely meant for a closed LAN setting where everybody is

friendly. This service can be enabled by setting daemon.receivepack configuration item to true.

EXAMPLES
We assume the following in /etc/services

$ grep 9418 /etc/services

git 9418/tcp # Git Version Control System

git daemon as inetd server

GIT-DAEMON(1) Git Manual GIT-DAEMON(1)

Git 2.42.0 2023-08-21 GIT-DAEMON(1)

To set up git daemon as an inetd service that handles any repository within /pub/foo or /pub/bar,

place an entry like the following into /etc/inetd all on one line:

git stream tcp nowait nobody /usr/bin/git

git daemon --inetd --verbose --export-all

/pub/foo /pub/bar

git daemon as inetd server for virtual hosts

To set up git daemon as an inetd service that handles repositories for different virtual hosts,

www.example.com and www.example.org, place an entry like the following into /etc/inetd all on

one line:

git stream tcp nowait nobody /usr/bin/git

git daemon --inetd --verbose --export-all

--interpolated-path=/pub/%H%D

/pub/www.example.org/software

/pub/www.example.com/software

/software

In this example, the root-level directory /pub will contain a subdirectory for each virtual host

name supported. Further, both hosts advertise repositories simply as

git://www.example.com/software/repo.git. For pre-1.4.0 clients, a symlink from /software into the

appropriate default repository could be made as well.

git daemon as regular daemon for virtual hosts

To set up git daemon as a regular, non-inetd service that handles repositories for multiple virtual

hosts based on their IP addresses, start the daemon like this:

git daemon --verbose --export-all

--interpolated-path=/pub/%IP/%D

/pub/192.168.1.200/software

/pub/10.10.220.23/software

In this example, the root-level directory /pub will contain a subdirectory for each virtual host IP

address supported. Repositories can still be accessed by hostname though, assuming they

correspond to these IP addresses.

selectively enable/disable services per repository

To enable git archive --remote and disable git fetch against a repository, have the following in the

GIT-DAEMON(1) Git Manual GIT-DAEMON(1)

Git 2.42.0 2023-08-21 GIT-DAEMON(1)

configuration file in the repository (that is the file config next to HEAD, refs and objects).

[daemon]

uploadpack = false

uploadarch = true

ENVIRONMENT
git daemon will set REMOTE_ADDR to the IP address of the client that connected to it, if the IP

address is available. REMOTE_ADDR will be available in the environment of hooks called when

services are performed.

GIT
Part of the git(1) suite

GIT-DAEMON(1) Git Manual GIT-DAEMON(1)

Git 2.42.0 2023-08-21 GIT-DAEMON(1)

