
NAME
git-for-each-ref - Output information on each ref

SYNOPSIS
git for-each-ref [--count=<count>] [--shell|--perl|--python|--tcl]

[(--sort=<key>)...] [--format=<format>]

[--stdin | <pattern>...]

[--points-at=<object>]

[--merged[=<object>]] [--no-merged[=<object>]]

[--contains[=<object>]] [--no-contains[=<object>]]

[--exclude=<pattern> ...]

DESCRIPTION
Iterate over all refs that match <pattern> and show them according to the given <format>, after sorting

them according to the given set of <key>. If <count> is given, stop after showing that many refs. The

interpolated values in <format> can optionally be quoted as string literals in the specified host language

allowing their direct evaluation in that language.

OPTIONS
<pattern>...

If one or more patterns are given, only refs are shown that match against at least one pattern,

either using fnmatch(3) or literally, in the latter case matching completely or from the beginning

up to a slash.

--stdin

If --stdin is supplied, then the list of patterns is read from standard input instead of from the

argument list.

--count=<count>

By default the command shows all refs that match <pattern>. This option makes it stop after

showing that many refs.

--sort=<key>

A field name to sort on. Prefix - to sort in descending order of the value. When unspecified,

refname is used. You may use the --sort=<key> option multiple times, in which case the last key

becomes the primary key.

--format=<format>

A string that interpolates %(fieldname) from a ref being shown and the object it points at. If

GIT-FOR-EACH-REF(1) Git Manual GIT-FOR-EACH-REF(1)

Git 2.42.0 2023-08-21 GIT-FOR-EACH-REF(1)

fieldname is prefixed with an asterisk (*) and the ref points at a tag object, use the value for the

field in the object which the tag object refers to (instead of the field in the tag object). When

unspecified, <format> defaults to %(objectname) SPC %(objecttype) TAB %(refname). It also

interpolates %% to %, and %xx where xx are hex digits interpolates to character with hex code

xx; for example %00 interpolates to \0 (NUL), %09 to \t (TAB) and %0a to \n (LF).

--color[=<when>]

Respect any colors specified in the --format option. The <when> field must be one of always,

never, or auto (if <when> is absent, behave as if always was given).

--shell, --perl, --python, --tcl

If given, strings that substitute %(fieldname) placeholders are quoted as string literals suitable for

the specified host language. This is meant to produce a scriptlet that can directly be ‘eval‘ed.

--points-at=<object>

Only list refs which points at the given object.

--merged[=<object>]

Only list refs whose tips are reachable from the specified commit (HEAD if not specified).

--no-merged[=<object>]

Only list refs whose tips are not reachable from the specified commit (HEAD if not specified).

--contains[=<object>]

Only list refs which contain the specified commit (HEAD if not specified).

--no-contains[=<object>]

Only list refs which don’t contain the specified commit (HEAD if not specified).

--ignore-case

Sorting and filtering refs are case insensitive.

--omit-empty

Do not print a newline after formatted refs where the format expands to the empty string.

--exclude=<pattern>

If one or more patterns are given, only refs which do not match any excluded pattern(s) are shown.

Matching is done using the same rules as <pattern> above.

FIELD NAMES

GIT-FOR-EACH-REF(1) Git Manual GIT-FOR-EACH-REF(1)

Git 2.42.0 2023-08-21 GIT-FOR-EACH-REF(1)

Various values from structured fields in referenced objects can be used to interpolate into the resulting

output, or as sort keys.

For all objects, the following names can be used:

refname

The name of the ref (the part after $GIT_DIR/). For a non-ambiguous short name of the ref

append :short. The option core.warnAmbiguousRefs is used to select the strict abbreviation mode.

If lstrip=<N> (rstrip=<N>) is appended, strips <N> slash-separated path components from the

front (back) of the refname (e.g. %(refname:lstrip=2) turns refs/tags/foo into foo and

%(refname:rstrip=2) turns refs/tags/foo into refs). If <N> is a negative number, strip as many path

components as necessary from the specified end to leave -<N> path components (e.g.

%(refname:lstrip=-2) turns refs/tags/foo into tags/foo and %(refname:rstrip=-1) turns refs/tags/foo
into refs). When the ref does not have enough components, the result becomes an empty string if

stripping with positive <N>, or it becomes the full refname if stripping with negative <N>.

Neither is an error.

strip can be used as a synonym to lstrip.

objecttype

The type of the object (blob, tree, commit, tag).

objectsize

The size of the object (the same as git cat-file -s reports). Append :disk to get the size, in bytes,

that the object takes up on disk. See the note about on-disk sizes in the CAVEATS section below.

objectname

The object name (aka SHA-1). For a non-ambiguous abbreviation of the object name append

:short. For an abbreviation of the object name with desired length append :short=<length>, where

the minimum length is MINIMUM_ABBREV. The length may be exceeded to ensure unique

object names.

deltabase

This expands to the object name of the delta base for the given object, if it is stored as a delta.

Otherwise it expands to the null object name (all zeroes).

upstream

The name of a local ref which can be considered "upstream" from the displayed ref. Respects

:short, :lstrip and :rstrip in the same way as refname above. Additionally respects :track to show

"[ahead N, behind M]" and :trackshort to show the terse version: ">" (ahead), "<" (behind), "<>"

GIT-FOR-EACH-REF(1) Git Manual GIT-FOR-EACH-REF(1)

Git 2.42.0 2023-08-21 GIT-FOR-EACH-REF(1)

(ahead and behind), or "=" (in sync). :track also prints "[gone]" whenever unknown upstream ref

is encountered. Append :track,nobracket to show tracking information without brackets (i.e "ahead

N, behind M").

For any remote-tracking branch %(upstream), %(upstream:remotename) and

%(upstream:remoteref) refer to the name of the remote and the name of the tracked remote ref,

respectively. In other words, the remote-tracking branch can be updated explicitly and

individually by using the refspec %(upstream:remoteref):%(upstream) to fetch from

%(upstream:remotename).

Has no effect if the ref does not have tracking information associated with it. All the options apart

from nobracket are mutually exclusive, but if used together the last option is selected.

push

The name of a local ref which represents the @{push} location for the displayed ref. Respects

:short, :lstrip, :rstrip, :track, :trackshort, :remotename, and :remoteref options as upstream does.

Produces an empty string if no @{push} ref is configured.

HEAD

* if HEAD matches current ref (the checked out branch), ’ ’ otherwise.

color

Change output color. Followed by :<colorname>, where color names are described under Values

in the "CONFIGURATION FILE" section of git-config(1). For example, %(color:bold red).

align

Left-, middle-, or right-align the content between %(align:...) and %(end). The "align:" is followed

by width=<width> and position=<position> in any order separated by a comma, where the

<position> is either left, right or middle, default being left and <width> is the total length of the

content with alignment. For brevity, the "width=" and/or "position=" prefixes may be omitted, and

bare <width> and <position> used instead. For instance, %(align:<width>,<position>). If the

contents length is more than the width then no alignment is performed. If used with --quote
everything in between %(align:...) and %(end) is quoted, but if nested then only the topmost level

performs quoting.

if

Used as %(if)...%(then)...%(end) or %(if)...%(then)...%(else)...%(end). If there is an atom with

value or string literal after the %(if) then everything after the %(then) is printed, else if the %(else)

atom is used, then everything after %(else) is printed. We ignore space when evaluating the string

before %(then), this is useful when we use the %(HEAD) atom which prints either "*" or " " and

GIT-FOR-EACH-REF(1) Git Manual GIT-FOR-EACH-REF(1)

Git 2.42.0 2023-08-21 GIT-FOR-EACH-REF(1)

we want to apply the if condition only on the HEAD ref. Append ":equals=<string>" or

":notequals=<string>" to compare the value between the %(if:...) and %(then) atoms with the

given string.

symref

The ref which the given symbolic ref refers to. If not a symbolic ref, nothing is printed. Respects

the :short, :lstrip and :rstrip options in the same way as refname above.

signature

The GPG signature of a commit.

signature:grade

Show "G" for a good (valid) signature, "B" for a bad signature, "U" for a good signature with

unknown validity, "X" for a good signature that has expired, "Y" for a good signature made by an

expired key, "R" for a good signature made by a revoked key, "E" if the signature cannot be

checked (e.g. missing key) and "N" for no signature.

signature:signer

The signer of the GPG signature of a commit.

signature:key

The key of the GPG signature of a commit.

signature:fingerprint

The fingerprint of the GPG signature of a commit.

signature:primarykeyfingerprint

The primary key fingerprint of the GPG signature of a commit.

signature:trustlevel

The trust level of the GPG signature of a commit. Possible outputs are ultimate, fully, marginal,
never and undefined.

worktreepath

The absolute path to the worktree in which the ref is checked out, if it is checked out in any linked

worktree. Empty string otherwise.

ahead-behind:<committish>

Two integers, separated by a space, demonstrating the number of commits ahead and behind,

respectively, when comparing the output ref to the <committish> specified in the format.

GIT-FOR-EACH-REF(1) Git Manual GIT-FOR-EACH-REF(1)

Git 2.42.0 2023-08-21 GIT-FOR-EACH-REF(1)

describe[:options]

A human-readable name, like git-describe(1); empty string for undescribable commits. The

describe string may be followed by a colon and one or more comma-separated options.

tags=<bool-value>

Instead of only considering annotated tags, consider lightweight tags as well; see the

corresponding option in git-describe(1) for details.

abbrev=<number>

Use at least <number> hexadecimal digits; see the corresponding option in git-describe(1) for

details.

match=<pattern>

Only consider tags matching the given glob(7) pattern, excluding the "refs/tags/" prefix; see

the corresponding option in git-describe(1) for details.

exclude=<pattern>

Do not consider tags matching the given glob(7) pattern, excluding the "refs/tags/" prefix; see

the corresponding option in git-describe(1) for details.

In addition to the above, for commit and tag objects, the header field names (tree, parent, object, type,

and tag) can be used to specify the value in the header field. Fields tree and parent can also be used

with modifier :short and :short=<length> just like objectname.

For commit and tag objects, the special creatordate and creator fields will correspond to the appropriate

date or name-email-date tuple from the committer or tagger fields depending on the object type. These

are intended for working on a mix of annotated and lightweight tags.

Fields that have name-email-date tuple as its value (author, committer, and tagger) can be suffixed with

name, email, and date to extract the named component. For email fields (authoremail, committeremail
and taggeremail), :trim can be appended to get the email without angle brackets, and :localpart to get

the part before the @ symbol out of the trimmed email.

The raw data in an object is raw.

raw:size

The raw data size of the object.

Note that --format=%(raw) can not be used with --python, --shell, --tcl, because such language may not

support arbitrary binary data in their string variable type.

GIT-FOR-EACH-REF(1) Git Manual GIT-FOR-EACH-REF(1)

Git 2.42.0 2023-08-21 GIT-FOR-EACH-REF(1)

The message in a commit or a tag object is contents, from which contents:<part> can be used to extract

various parts out of:

contents:size

The size in bytes of the commit or tag message.

contents:subject

The first paragraph of the message, which typically is a single line, is taken as the "subject" of the

commit or the tag message. Instead of contents:subject, field subject can also be used to obtain

same results. :sanitize can be appended to subject for subject line suitable for filename.

contents:body

The remainder of the commit or the tag message that follows the "subject".

contents:signature

The optional GPG signature of the tag.

contents:lines=N

The first N lines of the message.

Additionally, the trailers as interpreted by git-interpret-trailers(1) are obtained as trailers[:options] (or

by using the historical alias contents:trailers[:options]). For valid [:option] values see trailers section of

git-log(1).

For sorting purposes, fields with numeric values sort in numeric order (objectsize, authordate,

committerdate, creatordate, taggerdate). All other fields are used to sort in their byte-value order.

There is also an option to sort by versions, this can be done by using the fieldname version:refname or

its alias v:refname.

In any case, a field name that refers to a field inapplicable to the object referred by the ref does not

cause an error. It returns an empty string instead.

As a special case for the date-type fields, you may specify a format for the date by adding : followed by

date format name (see the values the --date option to git-rev-list(1) takes).

Some atoms like %(align) and %(if) always require a matching %(end). We call them "opening atoms"

and sometimes denote them as %($open).

When a scripting language specific quoting is in effect, everything between a top-level opening atom

GIT-FOR-EACH-REF(1) Git Manual GIT-FOR-EACH-REF(1)

Git 2.42.0 2023-08-21 GIT-FOR-EACH-REF(1)

and its matching %(end) is evaluated according to the semantics of the opening atom and only its result

from the top-level is quoted.

EXAMPLES
An example directly producing formatted text. Show the most recent 3 tagged commits:

#!/bin/sh

git for-each-ref --count=3 --sort=’-*authordate’ \

--format=’From: %(*authorname) %(*authoremail)

Subject: %(*subject)

Date: %(*authordate)

Ref: %(*refname)

%(*body)

’ ’refs/tags’

A simple example showing the use of shell eval on the output, demonstrating the use of --shell. List the

prefixes of all heads:

#!/bin/sh

git for-each-ref --shell --format="ref=%(refname)" refs/heads | \

while read entry

do

eval "$entry"

echo ‘dirname $ref‘

done

A bit more elaborate report on tags, demonstrating that the format may be an entire script:

#!/bin/sh

fmt=’

r=%(refname)

t=%(*objecttype)

T=${r#refs/tags/}

GIT-FOR-EACH-REF(1) Git Manual GIT-FOR-EACH-REF(1)

Git 2.42.0 2023-08-21 GIT-FOR-EACH-REF(1)

o=%(*objectname)

n=%(*authorname)

e=%(*authoremail)

s=%(*subject)

d=%(*authordate)

b=%(*body)

kind=Tag

if test "z$t" = z

then

could be a lightweight tag

t=%(objecttype)

kind="Lightweight tag"

o=%(objectname)

n=%(authorname)

e=%(authoremail)

s=%(subject)

d=%(authordate)

b=%(body)

fi

echo "$kind $T points at a $t object $o"

if test "z$t" = zcommit

then

echo "The commit was authored by $n $e

at $d, and titled

$s

Its message reads as:

"

echo "$b" | sed -e "s/^/ /"

echo

fi

’

eval=‘git for-each-ref --shell --format="$fmt" \

--sort=’*objecttype’ \

--sort=-taggerdate \

refs/tags‘

eval "$eval"

GIT-FOR-EACH-REF(1) Git Manual GIT-FOR-EACH-REF(1)

Git 2.42.0 2023-08-21 GIT-FOR-EACH-REF(1)

An example to show the usage of %(if)...%(then)...%(else)...%(end). This prefixes the current branch

with a star.

git for-each-ref --format="%(if)%(HEAD)%(then)* %(else) %(end)%(refname:short)" refs/heads/

An example to show the usage of %(if)...%(then)...%(end). This prints the authorname, if present.

git for-each-ref --format="%(refname)%(if)%(authorname)%(then) Authored by: %(authorname)%(end)"

CAVEATS
Note that the sizes of objects on disk are reported accurately, but care should be taken in drawing

conclusions about which refs or objects are responsible for disk usage. The size of a packed non-delta

object may be much larger than the size of objects which delta against it, but the choice of which object

is the base and which is the delta is arbitrary and is subject to change during a repack.

Note also that multiple copies of an object may be present in the object database; in this case, it is

undefined which copy’s size or delta base will be reported.

NOTES
When combining multiple --contains and --no-contains filters, only references that contain at least one

of the --contains commits and contain none of the --no-contains commits are shown.

When combining multiple --merged and --no-merged filters, only references that are reachable from at

least one of the --merged commits and from none of the --no-merged commits are shown.

SEE ALSO
git-show-ref(1)

GIT
Part of the git(1) suite

GIT-FOR-EACH-REF(1) Git Manual GIT-FOR-EACH-REF(1)

Git 2.42.0 2023-08-21 GIT-FOR-EACH-REF(1)

