
NAME
git-http-backend - Server side implementation of Git over HTTP

SYNOPSIS
git http-backend

DESCRIPTION
A simple CGI program to serve the contents of a Git repository to Git clients accessing the repository

over http:// and https:// protocols. The program supports clients fetching using both the smart HTTP

protocol and the backwards-compatible dumb HTTP protocol, as well as clients pushing using the

smart HTTP protocol. It also supports Git’s more-efficient "v2" protocol if properly configured; see the

discussion of GIT_PROTOCOL in the ENVIRONMENT section below.

It verifies that the directory has the magic file "git-daemon-export-ok", and it will refuse to export any

Git directory that hasn’t explicitly been marked for export this way (unless the

GIT_HTTP_EXPORT_ALL environmental variable is set).

By default, only the upload-pack service is enabled, which serves git fetch-pack and git ls-remote

clients, which are invoked from git fetch, git pull, and git clone. If the client is authenticated, the

receive-pack service is enabled, which serves git send-pack clients, which is invoked from git push.

SERVICES
These services can be enabled/disabled using the per-repository configuration file:

http.getanyfile

This serves Git clients older than version 1.6.6 that are unable to use the upload pack service.

When enabled, clients are able to read any file within the repository, including objects that are no

longer reachable from a branch but are still present. It is enabled by default, but a repository can

disable it by setting this configuration item to false.

http.uploadpack

This serves git fetch-pack and git ls-remote clients. It is enabled by default, but a repository can

disable it by setting this configuration item to false.

http.receivepack

This serves git send-pack clients, allowing push. It is disabled by default for anonymous users,

and enabled by default for users authenticated by the web server. It can be disabled by setting this

item to false, or enabled for all users, including anonymous users, by setting it to true.

GIT-HTTP-BACKEND(1) Git Manual GIT-HTTP-BACKEND(1)

Git 2.42.0 2023-08-21 GIT-HTTP-BACKEND(1)

URL TRANSLATION
To determine the location of the repository on disk, git http-backend concatenates the environment

variables PATH_INFO, which is set automatically by the web server, and GIT_PROJECT_ROOT,

which must be set manually in the web server configuration. If GIT_PROJECT_ROOT is not set, git

http-backend reads PATH_TRANSLATED, which is also set automatically by the web server.

EXAMPLES
All of the following examples map http://$hostname/git/foo/bar.git to /var/www/git/foo/bar.git.

Apache 2.x

Ensure mod_cgi, mod_alias, and mod_env are enabled, set GIT_PROJECT_ROOT (or

DocumentRoot) appropriately, and create a ScriptAlias to the CGI:

SetEnv GIT_PROJECT_ROOT /var/www/git

SetEnv GIT_HTTP_EXPORT_ALL

ScriptAlias /git/ /usr/libexec/git-core/git-http-backend/

This is not strictly necessary using Apache and a modern version of

git-http-backend, as the webserver will pass along the header in the

environment as HTTP_GIT_PROTOCOL, and http-backend will copy that into

GIT_PROTOCOL. But you may need this line (or something similar if you

are using a different webserver), or if you want to support older Git

versions that did not do that copying.

#

Having the webserver set up GIT_PROTOCOL is perfectly fine even with

modern versions (and will take precedence over HTTP_GIT_PROTOCOL,

which means it can be used to override the client’s request).

SetEnvIf Git-Protocol ".*" GIT_PROTOCOL=$0

To enable anonymous read access but authenticated write access, require authorization for both

the initial ref advertisement (which we detect as a push via the service parameter in the query

string), and the receive-pack invocation itself:

RewriteCond %{QUERY_STRING} service=git-receive-pack [OR]

RewriteCond %{REQUEST_URI} /git-receive-pack$

RewriteRule ^/git/ - [E=AUTHREQUIRED:yes]

<LocationMatch "^/git/">

Order Deny,Allow

Deny from env=AUTHREQUIRED

GIT-HTTP-BACKEND(1) Git Manual GIT-HTTP-BACKEND(1)

Git 2.42.0 2023-08-21 GIT-HTTP-BACKEND(1)

AuthType Basic

AuthName "Git Access"

Require group committers

Satisfy Any

...

</LocationMatch>

If you do not have mod_rewrite available to match against the query string, it is sufficient to just

protect git-receive-pack itself, like:

<LocationMatch "^/git/.*/git-receive-pack$">

AuthType Basic

AuthName "Git Access"

Require group committers

...

</LocationMatch>

In this mode, the server will not request authentication until the client actually starts the object

negotiation phase of the push, rather than during the initial contact. For this reason, you must also

enable the http.receivepack config option in any repositories that should accept a push. The

default behavior, if http.receivepack is not set, is to reject any pushes by unauthenticated users; the

initial request will therefore report 403 Forbidden to the client, without even giving an opportunity

for authentication.

To require authentication for both reads and writes, use a Location directive around the repository,

or one of its parent directories:

<Location /git/private>

AuthType Basic

AuthName "Private Git Access"

Require group committers

...

</Location>

To serve gitweb at the same url, use a ScriptAliasMatch to only those URLs that git http-backend

can handle, and forward the rest to gitweb:

ScriptAliasMatch \

"(?x)^/git/(.*/(HEAD | \

info/refs | \

GIT-HTTP-BACKEND(1) Git Manual GIT-HTTP-BACKEND(1)

Git 2.42.0 2023-08-21 GIT-HTTP-BACKEND(1)

objects/(info/[^/]+ | \

[0-9a-f]{2}/[0-9a-f]{38} | \

pack/pack-[0-9a-f]{40}\.(pack|idx)) | \

git-(upload|receive)-pack))$" \

/usr/libexec/git-core/git-http-backend/$1

ScriptAlias /git/ /var/www/cgi-bin/gitweb.cgi/

To serve multiple repositories from different gitnamespaces(7) in a single repository:

SetEnvIf Request_URI "^/git/([^/]*)" GIT_NAMESPACE=$1

ScriptAliasMatch ^/git/[^/]*(.*) /usr/libexec/git-core/git-http-backend/storage.git$1

Accelerated static Apache 2.x

Similar to the above, but Apache can be used to return static files that are stored on disk. On many

systems this may be more efficient as Apache can ask the kernel to copy the file contents from the

file system directly to the network:

SetEnv GIT_PROJECT_ROOT /var/www/git

AliasMatch ^/git/(.*/objects/[0-9a-f]{2}/[0-9a-f]{38})$ /var/www/git/$1

AliasMatch ^/git/(.*/objects/pack/pack-[0-9a-f]{40}.(pack|idx))$ /var/www/git/$1

ScriptAlias /git/ /usr/libexec/git-core/git-http-backend/

This can be combined with the gitweb configuration:

SetEnv GIT_PROJECT_ROOT /var/www/git

AliasMatch ^/git/(.*/objects/[0-9a-f]{2}/[0-9a-f]{38})$ /var/www/git/$1

AliasMatch ^/git/(.*/objects/pack/pack-[0-9a-f]{40}.(pack|idx))$ /var/www/git/$1

ScriptAliasMatch \

"(?x)^/git/(.*/(HEAD | \

info/refs | \

objects/info/[^/]+ | \

git-(upload|receive)-pack))$" \

/usr/libexec/git-core/git-http-backend/$1

ScriptAlias /git/ /var/www/cgi-bin/gitweb.cgi/

GIT-HTTP-BACKEND(1) Git Manual GIT-HTTP-BACKEND(1)

Git 2.42.0 2023-08-21 GIT-HTTP-BACKEND(1)

Lighttpd

Ensure that mod_cgi, mod_alias, mod_auth, mod_setenv are loaded, then set

GIT_PROJECT_ROOT appropriately and redirect all requests to the CGI:

alias.url += ("/git" => "/usr/lib/git-core/git-http-backend")

$HTTP["url"] =~ "^/git" {

cgi.assign = ("" => "")

setenv.add-environment = (

"GIT_PROJECT_ROOT" => "/var/www/git",

"GIT_HTTP_EXPORT_ALL" => ""

)

}

To enable anonymous read access but authenticated write access:

$HTTP["querystring"] =~ "service=git-receive-pack" {

include "git-auth.conf"

}

$HTTP["url"] =~ "^/git/.*/git-receive-pack$" {

include "git-auth.conf"

}

where git-auth.conf looks something like:

auth.require = (

"/" => (

"method" => "basic",

"realm" => "Git Access",

"require" => "valid-user"

)

)

...and set up auth.backend here

To require authentication for both reads and writes:

$HTTP["url"] =~ "^/git/private" {

include "git-auth.conf"

}

GIT-HTTP-BACKEND(1) Git Manual GIT-HTTP-BACKEND(1)

Git 2.42.0 2023-08-21 GIT-HTTP-BACKEND(1)

ENVIRONMENT
git http-backend relies upon the CGI environment variables set by the invoking web server, including:

+o

(if GIT_PROJECT_ROOT is set, otherwise PATH_TRANSLATED)

+o

+o

+o

+o

+o

The GIT_HTTP_EXPORT_ALL environmental variable may be passed to git-http-backend to bypass

the check for the "git-daemon-export-ok" file in each repository before allowing export of that

repository.

The GIT_HTTP_MAX_REQUEST_BUFFER environment variable (or the http.maxRequestBuffer
config variable) may be set to change the largest ref negotiation request that git will handle during a

fetch; any fetch requiring a larger buffer will not succeed. This value should not normally need to be

changed, but may be helpful if you are fetching from a repository with an extremely large number of

refs. The value can be specified with a unit (e.g., 100M for 100 megabytes). The default is 10

megabytes.

Clients may probe for optional protocol capabilities (like the v2 protocol) using the Git-Protocol HTTP

header. In order to support these, the contents of that header must appear in the GIT_PROTOCOL
environment variable. Most webservers will pass this header to the CGI via the

HTTP_GIT_PROTOCOL variable, and git-http-backend will automatically copy that to

GIT_PROTOCOL. However, some webservers may be more selective about which headers they’ll

pass, in which case they need to be configured explicitly (see the mention of Git-Protocol in the

Apache config from the earlier EXAMPLES section).

The backend process sets GIT_COMMITTER_NAME to $REMOTE_USER and

GIT_COMMITTER_EMAIL to ${REMOTE_USER}@http.${REMOTE_ADDR}, ensuring that any

reflogs created by git-receive-pack contain some identifying information of the remote user who

performed the push.

GIT-HTTP-BACKEND(1) Git Manual GIT-HTTP-BACKEND(1)

Git 2.42.0 2023-08-21 GIT-HTTP-BACKEND(1)

All CGI environment variables are available to each of

the hooks invoked by the git-receive-pack.

GIT
Part of the git(1) suite

GIT-HTTP-BACKEND(1) Git Manual GIT-HTTP-BACKEND(1)

Git 2.42.0 2023-08-21 GIT-HTTP-BACKEND(1)

