
NAME
git-ls-files - Show information about files in the index and the working tree

SYNOPSIS
git ls-files [-z] [-t] [-v] [-f]

[-c|--cached] [-d|--deleted] [-o|--others] [-i|--ignored]

[-s|--stage] [-u|--unmerged] [-k|--killed] [-m|--modified]

[--resolve-undo]

[--directory [--no-empty-directory]] [--eol]

[--deduplicate]

[-x <pattern>|--exclude=<pattern>]

[-X <file>|--exclude-from=<file>]

[--exclude-per-directory=<file>]

[--exclude-standard]

[--error-unmatch] [--with-tree=<tree-ish>]

[--full-name] [--recurse-submodules]

[--abbrev[=<n>]] [--format=<format>] [--] [<file>...]

DESCRIPTION
This merges the file listing in the index with the actual working directory list, and shows different

combinations of the two.

One or more of the options below may be used to determine the files shown, and each file may be

printed multiple times if there are multiple entries in the index or multiple statuses are applicable for

the relevant file selection options.

OPTIONS
-c, --cached

Show all files cached in Git’s index, i.e. all tracked files. (This is the default if no

-c/-s/-d/-o/-u/-k/-m/--resolve-undo options are specified.)

-d, --deleted

Show files with an unstaged deletion

-m, --modified

Show files with an unstaged modification (note that an unstaged deletion also counts as an

unstaged modification)

-o, --others

GIT-LS-FILES(1) Git Manual GIT-LS-FILES(1)

Git 2.42.0 2023-08-21 GIT-LS-FILES(1)

Show other (i.e. untracked) files in the output

-i, --ignored

Show only ignored files in the output. Must be used with either an explicit -c or -o. When showing

files in the index (i.e. when used with -c), print only those files matching an exclude pattern.

When showing "other" files (i.e. when used with -o), show only those matched by an exclude

pattern. Standard ignore rules are not automatically activated, therefore at least one of the

--exclude* options is required.

-s, --stage

Show staged contents’ mode bits, object name and stage number in the output.

--directory

If a whole directory is classified as "other", show just its name (with a trailing slash) and not its

whole contents. Has no effect without -o/--others.

--no-empty-directory

Do not list empty directories. Has no effect without --directory.

-u, --unmerged

Show information about unmerged files in the output, but do not show any other tracked files

(forces --stage, overrides --cached).

-k, --killed

Show untracked files on the filesystem that need to be removed due to file/directory conflicts for

tracked files to be able to be written to the filesystem.

--resolve-undo

Show files having resolve-undo information in the index together with their resolve-undo

information. (resolve-undo information is what is used to implement "git checkout -m $PATH",

i.e. to recreate merge conflicts that were accidentally resolved)

-z

\0 line termination on output and do not quote filenames. See OUTPUT below for more

information.

--deduplicate

When only filenames are shown, suppress duplicates that may come from having multiple stages

during a merge, or giving --deleted and --modified option at the same time. When any of the -t,
--unmerged, or --stage option is in use, this option has no effect.

GIT-LS-FILES(1) Git Manual GIT-LS-FILES(1)

Git 2.42.0 2023-08-21 GIT-LS-FILES(1)

-x <pattern>, --exclude=<pattern>

Skip untracked files matching pattern. Note that pattern is a shell wildcard pattern. See

EXCLUDE PATTERNS below for more information.

-X <file>, --exclude-from=<file>

Read exclude patterns from <file>; 1 per line.

--exclude-per-directory=<file>

Read additional exclude patterns that apply only to the directory and its subdirectories in <file>.

Deprecated; use --exclude-standard instead.

--exclude-standard

Add the standard Git exclusions: .git/info/exclude, .gitignore in each directory, and the user’s

global exclusion file.

--error-unmatch

If any <file> does not appear in the index, treat this as an error (return 1).

--with-tree=<tree-ish>

When using --error-unmatch to expand the user supplied <file> (i.e. path pattern) arguments to

paths, pretend that paths which were removed in the index since the named <tree-ish> are still

present. Using this option with -s or -u options does not make any sense.

-t

Show status tags together with filenames. Note that for scripting purposes, git-status(1) --porcelain
and git-diff-files(1) --name-status are almost always superior alternatives, and users should look at

git-status(1) --short or git-diff(1) --name-status for more user-friendly alternatives.

This option provides a reason for showing each filename, in the form of a status tag (which is

followed by a space and then the filename). The status tags are all single characters from the

following list:

H

tracked file that is not either unmerged or skip-worktree

S

tracked file that is skip-worktree

M

tracked file that is unmerged

GIT-LS-FILES(1) Git Manual GIT-LS-FILES(1)

Git 2.42.0 2023-08-21 GIT-LS-FILES(1)

R

tracked file with unstaged removal/deletion

C

tracked file with unstaged modification/change

K

untracked paths which are part of file/directory conflicts which prevent checking out tracked

files

?

untracked file

U

file with resolve-undo information

-v

Similar to -t, but use lowercase letters for files that are marked as assume unchanged (see git-
update-index(1)).

-f

Similar to -t, but use lowercase letters for files that are marked as fsmonitor valid (see git-update-
index(1)).

--full-name

When run from a subdirectory, the command usually outputs paths relative to the current

directory. This option forces paths to be output relative to the project top directory.

--recurse-submodules

Recursively calls ls-files on each active submodule in the repository. Currently there is only

support for the --cached and --stage modes.

--abbrev[=<n>]

Instead of showing the full 40-byte hexadecimal object lines, show the shortest prefix that is at

least <n> hexdigits long that uniquely refers the object. Non default number of digits can be

specified with --abbrev=<n>.

--debug

After each line that describes a file, add more data about its cache entry. This is intended to show

as much information as possible for manual inspection; the exact format may change at any time.

GIT-LS-FILES(1) Git Manual GIT-LS-FILES(1)

Git 2.42.0 2023-08-21 GIT-LS-FILES(1)

--eol

Show <eolinfo> and <eolattr> of files. <eolinfo> is the file content identification used by Git

when the "text" attribute is "auto" (or not set and core.autocrlf is not false). <eolinfo> is either

"-text", "none", "lf", "crlf", "mixed" or "".

"" means the file is not a regular file, it is not in the index or not accessible in the working tree.

<eolattr> is the attribute that is used when checking out or committing, it is either "", "-text",

"text", "text=auto", "text eol=lf", "text eol=crlf". Since Git 2.10 "text=auto eol=lf" and "text=auto

eol=crlf" are supported.

Both the <eolinfo> in the index ("i/<eolinfo>") and in the working tree ("w/<eolinfo>") are shown

for regular files, followed by the ("attr/<eolattr>").

--sparse

If the index is sparse, show the sparse directories without expanding to the contained files. Sparse

directories will be shown with a trailing slash, such as "x/" for a sparse directory "x".

--format=<format>

A string that interpolates %(fieldname) from the result being shown. It also interpolates %% to %,

and %xx where xx are hex digits interpolates to character with hex code xx; for example %00
interpolates to \0 (NUL), %09 to \t (TAB) and %0a to \n (LF). --format cannot be combined with

-s, -o, -k, -t, --resolve-undo and --eol.

--

Do not interpret any more arguments as options.

<file>

Files to show. If no files are given all files which match the other specified criteria are shown.

OUTPUT
git ls-files just outputs the filenames unless --stage is specified in which case it outputs:

[<tag>]<mode> <object> <stage> <file>

git ls-files --eol will show

i/<eolinfo><SPACES>w/<eolinfo><SPACES>attr/<eolattr><SPACE*><TAB><file>

git ls-files --unmerged and git ls-files --stage can be used to examine detailed information on unmerged

paths.

GIT-LS-FILES(1) Git Manual GIT-LS-FILES(1)

Git 2.42.0 2023-08-21 GIT-LS-FILES(1)

For an unmerged path, instead of recording a single mode/SHA-1 pair, the index records up to three

such pairs; one from tree O in stage 1, A in stage 2, and B in stage 3. This information can be used by

the user (or the porcelain) to see what should eventually be recorded at the path. (see git-read-tree(1)

for more information on state)

Without the -z option, pathnames with "unusual" characters are quoted as explained for the

configuration variable core.quotePath (see git-config(1)). Using -z the filename is output verbatim and

the line is terminated by a NUL byte.

It is possible to print in a custom format by using the --format option, which is able to interpolate

different fields using a %(fieldname) notation. For example, if you only care about the "objectname"

and "path" fields, you can execute with a specific "--format" like

git ls-files --format=’%(objectname) %(path)’

FIELD NAMES
The way each path is shown can be customized by using the --format=<format> option, where the

%(fieldname) in the <format> string for various aspects of the index entry are interpolated. The

following "fieldname" are understood:

objectmode

The mode of the file which is recorded in the index.

objecttype

The object type of the file which is recorded in the index.

objectname

The name of the file which is recorded in the index.

objectsize[:padded]

The object size of the file which is recorded in the index ("-" if the object is a commit or tree). It

also supports a padded format of size with "%(objectsize:padded)".

stage

The stage of the file which is recorded in the index.

eolinfo:index, eolinfo:worktree

The <eolinfo> (see the description of the --eol option) of the contents in the index or in the

worktree for the path.

GIT-LS-FILES(1) Git Manual GIT-LS-FILES(1)

Git 2.42.0 2023-08-21 GIT-LS-FILES(1)

eolattr

The <eolattr> (see the description of the --eol option) that applies to the path.

path

The pathname of the file which is recorded in the index.

EXCLUDE PATTERNS
git ls-files can use a list of "exclude patterns" when traversing the directory tree and finding files to

show when the flags --others or --ignored are specified. gitignore(5) specifies the format of exclude

patterns.

Generally, you should just use --exclude-standard, but for historical reasons the exclude patterns can be

specified from the following places, in order:

1.

command-line flag --exclude=<pattern> specifies a single pattern. Patterns are ordered in the same order

they appear in the command line.

2.

command-line flag --exclude-from=<file> specifies a file containing a list of patterns. Patterns are ordered

in the same order they appear in the file.

3.

command-line flag --exclude-per-directory=<name> specifies a name of the file in each directory git

ls-files examines, normally .gitignore. Files in deeper directories take precedence. Patterns are ordered in

the same order they appear in the files.

A pattern specified on the command line with --exclude or read from the file specified with

--exclude-from is relative to the top of the directory tree. A pattern read from a file specified by

--exclude-per-directory is relative to the directory that the pattern file appears in.

SEE ALSO
git-read-tree(1), gitignore(5)

GIT
Part of the git(1) suite

GIT-LS-FILES(1) Git Manual GIT-LS-FILES(1)

Git 2.42.0 2023-08-21 GIT-LS-FILES(1)

