
NAME
git-ls-tree - List the contents of a tree object

SYNOPSIS
git ls-tree [-d] [-r] [-t] [-l] [-z]

[--name-only] [--name-status] [--object-only] [--full-name] [--full-tree] [--abbrev[=<n>]] [--format=<format>]

<tree-ish> [<path>...]

DESCRIPTION
Lists the contents of a given tree object, like what "/bin/ls -a" does in the current working directory.

Note that:

+o

behaviour is slightly different from that of "/bin/ls" in that the <path> denotes just a list of patterns to

match, e.g. so specifying directory name (without -r) will behave differently, and order of the arguments

does not matter.

+o

behaviour is similar to that of "/bin/ls" in that the <path> is taken as relative to the current working

directory. E.g. when you are in a directory sub that has a directory dir, you can run git ls-tree -r HEAD dir

to list the contents of the tree (that is sub/dir in HEAD). You don’t want to give a tree that is not at the

root level (e.g. git ls-tree -r HEAD:sub dir) in this case, as that would result in asking for sub/sub/dir in

the HEAD commit. However, the current working directory can be ignored by passing --full-tree option.

OPTIONS
<tree-ish>

Id of a tree-ish.

-d

Show only the named tree entry itself, not its children.

-r

Recurse into sub-trees.

-t

Show tree entries even when going to recurse them. Has no effect if -r was not passed. -d implies

-t.

-l, --long

GIT-LS-TREE(1) Git Manual GIT-LS-TREE(1)

Git 2.42.0 2023-08-21 GIT-LS-TREE(1)



Show object size of blob (file) entries.

-z

\0 line termination on output and do not quote filenames. See OUTPUT FORMAT below for more

information.

--name-only, --name-status

List only filenames (instead of the "long" output), one per line. Cannot be combined with

--object-only.

--object-only

List only names of the objects, one per line. Cannot be combined with --name-only or

--name-status. This is equivalent to specifying --format=’%(objectname)’, but for both this option

and that exact format the command takes a hand-optimized codepath instead of going through the

generic formatting mechanism.

--abbrev[=<n>]

Instead of showing the full 40-byte hexadecimal object lines, show the shortest prefix that is at

least <n> hexdigits long that uniquely refers the object. Non default number of digits can be

specified with --abbrev=<n>.

--full-name

Instead of showing the path names relative to the current working directory, show the full path

names.

--full-tree

Do not limit the listing to the current working directory. Implies --full-name.

--format=<format>

A string that interpolates %(fieldname) from the result being shown. It also interpolates %% to %,

and %xNN where NN are hex digits interpolates to character with hex code NN; for example

%x00 interpolates to \0 (NUL), %x09 to \t (TAB) and %x0a to \n (LF). When specified, --format
cannot be combined with other format-altering options, including --long, --name-only and

--object-only.

[<path>...]

When paths are given, show them (note that this isn’t really raw pathnames, but rather a list of

patterns to match). Otherwise implicitly uses the root level of the tree as the sole path argument.

OUTPUT FORMAT

GIT-LS-TREE(1) Git Manual GIT-LS-TREE(1)

Git 2.42.0 2023-08-21 GIT-LS-TREE(1)



The output format of ls-tree is determined by either the --format option, or other format-altering

options such as --name-only etc. (see --format above).

The use of certain --format directives is equivalent to using those options, but invoking the full

formatting machinery can be slower than using an appropriate formatting option.

In cases where the --format would exactly map to an existing option ls-tree will use the appropriate

faster path. Thus the default format is equivalent to:

%(objectmode) %(objecttype) %(objectname)%x09%(path)

This output format is compatible with what --index-info --stdin of git update-index expects.

When the -l option is used, format changes to

%(objectmode) %(objecttype) %(objectname) %(objectsize:padded)%x09%(path)

Object size identified by <objectname> is given in bytes, and right-justified with minimum width of 7

characters. Object size is given only for blobs (file) entries; for other entries - character is used in place

of size.

Without the -z option, pathnames with "unusual" characters are quoted as explained for the

configuration variable core.quotePath (see git-config(1)). Using -z the filename is output verbatim and

the line is terminated by a NUL byte.

Customized format:

It is possible to print in a custom format by using the --format option, which is able to interpolate

different fields using a %(fieldname) notation. For example, if you only care about the "objectname"

and "path" fields, you can execute with a specific "--format" like

git ls-tree --format=’%(objectname) %(path)’ <tree-ish>

FIELD NAMES
Various values from structured fields can be used to interpolate into the resulting output. For each

outputting line, the following names can be used:

objectmode

The mode of the object.

GIT-LS-TREE(1) Git Manual GIT-LS-TREE(1)

Git 2.42.0 2023-08-21 GIT-LS-TREE(1)



objecttype

The type of the object (commit, blob or tree).

objectname

The name of the object.

objectsize[:padded]

The size of a blob object ("-" if it’s a commit or tree). It also supports a padded format of size with

"%(objectsize:padded)".

path

The pathname of the object.

GIT
Part of the git(1) suite

GIT-LS-TREE(1) Git Manual GIT-LS-TREE(1)

Git 2.42.0 2023-08-21 GIT-LS-TREE(1)


