
NAME
git-maintenance - Run tasks to optimize Git repository data

SYNOPSIS
git maintenance run [<options>]

git maintenance start [--scheduler=<scheduler>]

git maintenance (stop|register|unregister) [<options>]

DESCRIPTION
Run tasks to optimize Git repository data, speeding up other Git commands and reducing storage

requirements for the repository.

Git commands that add repository data, such as git add or git fetch, are optimized for a responsive user

experience. These commands do not take time to optimize the Git data, since such optimizations scale

with the full size of the repository while these user commands each perform a relatively small action.

The git maintenance command provides flexibility for how to optimize the Git repository.

SUBCOMMANDS
run

Run one or more maintenance tasks. If one or more --task options are specified, then those tasks

are run in that order. Otherwise, the tasks are determined by which maintenance.<task>.enabled
config options are true. By default, only maintenance.gc.enabled is true.

start

Start running maintenance on the current repository. This performs the same config updates as the

register subcommand, then updates the background scheduler to run git maintenance run
--scheduled on an hourly basis.

stop

Halt the background maintenance schedule. The current repository is not removed from the list of

maintained repositories, in case the background maintenance is restarted later.

register

Initialize Git config values so any scheduled maintenance will start running on this repository.

This adds the repository to the maintenance.repo config variable in the current user’s global

config, or the config specified by --config-file option, and enables some recommended

configuration values for maintenance.<task>.schedule. The tasks that are enabled are safe for

running in the background without disrupting foreground processes.

GIT-MAINTENANCE(1) Git Manual GIT-MAINTENANCE(1)

Git 2.45.2 2024-05-30 GIT-MAINTENANCE(1)

The register subcommand will also set the maintenance.strategy config value to incremental, if

this value is not previously set. The incremental strategy uses the following schedule for each

maintenance task:

+o

disabled.

+o

hourly.

+o

hourly.

+o

daily.

+o

daily.

git maintenance register will also disable foreground maintenance by setting maintenance.auto =
false in the current repository. This config setting will remain after a git maintenance unregister
command.

unregister

Remove the current repository from background maintenance. This only removes the repository

from the configured list. It does not stop the background maintenance processes from running.

The unregister subcommand will report an error if the current repository is not already registered.

Use the --force option to return success even when the current repository is not registered.

TASKS
commit-graph

The commit-graph job updates the commit-graph files incrementally, then verifies that the written

data is correct. The incremental write is safe to run alongside concurrent Git processes since it will

not expire .graph files that were in the previous commit-graph-chain file. They will be deleted by

a later run based on the expiration delay.

prefetch

The prefetch task updates the object directory with the latest objects from all registered remotes.

For each remote, a git fetch command is run. The configured refspec is modified to place all

GIT-MAINTENANCE(1) Git Manual GIT-MAINTENANCE(1)

Git 2.45.2 2024-05-30 GIT-MAINTENANCE(1)

requested refs within refs/prefetch/. Also, tags are not

updated.

This is done to avoid disrupting the remote-tracking

branches. The end users expect these refs to stay unmoved

unless they initiate a fetch. However, with the prefetch

task, the objects necessary to complete a later real fetch

would already be obtained, making the real fetch faster. In

the ideal case, it will just become an update to a bunch of

remote-tracking branches without any object transfer.

gc

Clean up unnecessary files and optimize the local repository. "GC" stands for "garbage

collection," but this task performs many smaller tasks. This task can be expensive for large

repositories, as it repacks all Git objects into a single pack-file. It can also be disruptive in some

situations, as it deletes stale data. See git-gc(1) for more details on garbage collection in Git.

loose-objects

The loose-objects job cleans up loose objects and places them into pack-files. In order to prevent

race conditions with concurrent Git commands, it follows a two-step process. First, it deletes any

loose objects that already exist in a pack-file; concurrent Git processes will examine the pack-file

for the object data instead of the loose object. Second, it creates a new pack-file (starting with

"loose-") containing a batch of loose objects. The batch size is limited to 50 thousand objects to

prevent the job from taking too long on a repository with many loose objects. The gc task writes

unreachable objects as loose objects to be cleaned up by a later step only if they are not re-added

to a pack-file; for this reason it is not advisable to enable both the loose-objects and gc tasks at the

same time.

incremental-repack

The incremental-repack job repacks the object directory using the multi-pack-index feature. In

order to prevent race conditions with concurrent Git commands, it follows a two-step process.

First, it calls git multi-pack-index expire to delete pack-files unreferenced by the multi-pack-index
file. Second, it calls git multi-pack-index repack to select several small pack-files and repack them

into a bigger one, and then update the multi-pack-index entries that refer to the small pack-files to

refer to the new pack-file. This prepares those small pack-files for deletion upon the next run of

git multi-pack-index expire. The selection of the small pack-files is such that the expected size of

the big pack-file is at least the batch size; see the --batch-size option for the repack subcommand

in git-multi-pack-index(1). The default batch-size is zero, which is a special case that attempts to

repack all pack-files into a single pack-file.

GIT-MAINTENANCE(1) Git Manual GIT-MAINTENANCE(1)

Git 2.45.2 2024-05-30 GIT-MAINTENANCE(1)

pack-refs

The pack-refs task collects the loose reference files and collects them into a single file. This

speeds up operations that need to iterate across many references. See git-pack-refs(1) for more

information.

OPTIONS
--auto

When combined with the run subcommand, run maintenance tasks only if certain thresholds are

met. For example, the gc task runs when the number of loose objects exceeds the number stored in

the gc.auto config setting, or when the number of pack-files exceeds the gc.autoPackLimit config

setting. Not compatible with the --schedule option.

--schedule

When combined with the run subcommand, run maintenance tasks only if certain time conditions

are met, as specified by the maintenance.<task>.schedule config value for each <task>. This

config value specifies a number of seconds since the last time that task ran, according to the

maintenance.<task>.lastRun config value. The tasks that are tested are those provided by the

--task=<task> option(s) or those with maintenance.<task>.enabled set to true.

--quiet

Do not report progress or other information over stderr.

--task=<task>

If this option is specified one or more times, then only run the specified tasks in the specified

order. If no --task=<task> arguments are specified, then only the tasks with

maintenance.<task>.enabled configured as true are considered. See the TASKS section for the list

of accepted <task> values.

--scheduler=auto|crontab|systemd-timer|launchctl|schtasks

When combined with the start subcommand, specify the scheduler for running the hourly, daily

and weekly executions of git maintenance run. Possible values for <scheduler> are auto, crontab
(POSIX), systemd-timer (Linux), launchctl (macOS), and schtasks (Windows). When auto is

specified, the appropriate platform-specific scheduler is used; on Linux, systemd-timer is used if

available, otherwise crontab. Default is auto.

TROUBLESHOOTING
The git maintenance command is designed to simplify the repository maintenance patterns while

minimizing user wait time during Git commands. A variety of configuration options are available to

allow customizing this process. The default maintenance options focus on operations that complete

quickly, even on large repositories.

GIT-MAINTENANCE(1) Git Manual GIT-MAINTENANCE(1)

Git 2.45.2 2024-05-30 GIT-MAINTENANCE(1)

Users may find some cases where scheduled maintenance tasks do not run as frequently as intended.

Each git maintenance run command takes a lock on the repository’s object database, and this prevents

other concurrent git maintenance run commands from running on the same repository. Without this

safeguard, competing processes could leave the repository in an unpredictable state.

The background maintenance schedule runs git maintenance run processes on an hourly basis. Each run

executes the "hourly" tasks. At midnight, that process also executes the "daily" tasks. At midnight on

the first day of the week, that process also executes the "weekly" tasks. A single process iterates over

each registered repository, performing the scheduled tasks for that frequency. Depending on the

number of registered repositories and their sizes, this process may take longer than an hour. In this

case, multiple git maintenance run commands may run on the same repository at the same time,

colliding on the object database lock. This results in one of the two tasks not running.

If you find that some maintenance windows are taking longer than one hour to complete, then consider

reducing the complexity of your maintenance tasks. For example, the gc task is much slower than the

incremental-repack task. However, this comes at a cost of a slightly larger object database. Consider

moving more expensive tasks to be run less frequently.

Expert users may consider scheduling their own maintenance tasks using a different schedule than is

available through git maintenance start and Git configuration options. These users should be aware of

the object database lock and how concurrent git maintenance run commands behave. Further, the git gc
command should not be combined with git maintenance run commands. git gc modifies the object

database but does not take the lock in the same way as git maintenance run. If possible, use git
maintenance run --task=gc instead of git gc.

The following sections describe the mechanisms put in place to run background maintenance by git
maintenance start and how to customize them.

BACKGROUND MAINTENANCE ON POSIX SYSTEMS
The standard mechanism for scheduling background tasks on POSIX systems is cron(8). This tool

executes commands based on a given schedule. The current list of user-scheduled tasks can be found

by running crontab -l. The schedule written by git maintenance start is similar to this:

BEGIN GIT MAINTENANCE SCHEDULE

The following schedule was created by Git

Any edits made in this region might be

replaced in the future by a Git command.

0 1-23 * * * "/<path>/git" --exec-path="/<path>" for-each-repo --config=maintenance.repo maintenance run --schedule=hourly

0 0 * * 1-6 "/<path>/git" --exec-path="/<path>" for-each-repo --config=maintenance.repo maintenance run --schedule=daily

GIT-MAINTENANCE(1) Git Manual GIT-MAINTENANCE(1)

Git 2.45.2 2024-05-30 GIT-MAINTENANCE(1)

0 0 * * 0 "/<path>/git" --exec-path="/<path>" for-each-repo --config=maintenance.repo maintenance run --schedule=weekly

END GIT MAINTENANCE SCHEDULE

The comments are used as a region to mark the schedule as written by Git. Any modifications within

this region will be completely deleted by git maintenance stop or overwritten by git maintenance start.

The crontab entry specifies the full path of the git executable to ensure that the executed git command

is the same one with which git maintenance start was issued independent of PATH. If the same user

runs git maintenance start with multiple Git executables, then only the latest executable is used.

These commands use git for-each-repo --config=maintenance.repo to run git maintenance run
--schedule=<frequency> on each repository listed in the multi-valued maintenance.repo config option.

These are typically loaded from the user-specific global config. The git maintenance process then

determines which maintenance tasks are configured to run on each repository with each <frequency>
using the maintenance.<task>.schedule config options. These values are loaded from the global or

repository config values.

If the config values are insufficient to achieve your desired background maintenance schedule, then

you can create your own schedule. If you run crontab -e, then an editor will load with your

user-specific cron schedule. In that editor, you can add your own schedule lines. You could start by

adapting the default schedule listed earlier, or you could read the crontab(5) documentation for

advanced scheduling techniques. Please do use the full path and --exec-path techniques from the

default schedule to ensure you are executing the correct binaries in your schedule.

BACKGROUND MAINTENANCE ON LINUX SYSTEMD SYSTEMS
While Linux supports cron, depending on the distribution, cron may be an optional package not

necessarily installed. On modern Linux distributions, systemd timers are superseding it.

If user systemd timers are available, they will be used as a replacement of cron.

In this case, git maintenance start will create user systemd timer units and start the timers. The current

list of user-scheduled tasks can be found by running systemctl --user list-timers. The timers written by

git maintenance start are similar to this:

$ systemctl --user list-timers

NEXT LEFT LAST PASSED UNIT ACTIVATES

Thu 2021-04-29 19:00:00 CEST 42min left Thu 2021-04-29 18:00:11 CEST 17min ago git-maintenance@hourly.timer

Fri 2021-04-30 00:00:00 CEST 5h 42min left Thu 2021-04-29 00:00:11 CEST 18h ago git-maintenance@daily.timer

GIT-MAINTENANCE(1) Git Manual GIT-MAINTENANCE(1)

Git 2.45.2 2024-05-30 GIT-MAINTENANCE(1)

Mon 2021-05-03 00:00:00 CEST 3 days left Mon 2021-04-26 00:00:11 CEST 3 days ago git-maintenance@weekly.timer

One timer is registered for each --schedule=<frequency> option.

The definition of the systemd units can be inspected in the following files:

~/.config/systemd/user/git-maintenance@.timer

~/.config/systemd/user/git-maintenance@.service

~/.config/systemd/user/timers.target.wants/git-maintenance@hourly.timer

~/.config/systemd/user/timers.target.wants/git-maintenance@daily.timer

~/.config/systemd/user/timers.target.wants/git-maintenance@weekly.timer

git maintenance start will overwrite these files and start the timer again with systemctl --user, so any

customization should be done by creating a drop-in file, i.e. a .conf suffixed file in the

~/.config/systemd/user/git-maintenance@.service.d directory.

git maintenance stop will stop the user systemd timers and delete the above mentioned files.

For more details, see systemd.timer(5).

BACKGROUND MAINTENANCE ON MACOS SYSTEMS
While macOS technically supports cron, using crontab -e requires elevated privileges and the executed

process does not have a full user context. Without a full user context, Git and its credential helpers

cannot access stored credentials, so some maintenance tasks are not functional.

Instead, git maintenance start interacts with the launchctl tool, which is the recommended way to

schedule timed jobs in macOS. Scheduling maintenance through git maintenance (start|stop) requires

some launchctl features available only in macOS 10.11 or later.

Your user-specific scheduled tasks are stored as XML-formatted .plist files in

~/Library/LaunchAgents/. You can see the currently-registered tasks using the following command:

$ ls ~/Library/LaunchAgents/org.git-scm.git*

org.git-scm.git.daily.plist

org.git-scm.git.hourly.plist

org.git-scm.git.weekly.plist

GIT-MAINTENANCE(1) Git Manual GIT-MAINTENANCE(1)

Git 2.45.2 2024-05-30 GIT-MAINTENANCE(1)

One task is registered for each --schedule=<frequency> option. To inspect how the XML format

describes each schedule, open one of these .plist files in an editor and inspect the <array> element

following the <key>StartCalendarInterval</key> element.

git maintenance start will overwrite these files and register the tasks again with launchctl, so any

customizations should be done by creating your own .plist files with distinct names. Similarly, the git
maintenance stop command will unregister the tasks with launchctl and delete the .plist files.

To create more advanced customizations to your background tasks, see launchctl.plist(5) for more

information.

BACKGROUND MAINTENANCE ON WINDOWS SYSTEMS
Windows does not support cron and instead has its own system for scheduling background tasks. The

git maintenance start command uses the schtasks command to submit tasks to this system. You can

inspect all background tasks using the Task Scheduler application. The tasks added by Git have names

of the form Git Maintenance (<frequency>). The Task Scheduler GUI has ways to inspect these tasks,

but you can also export the tasks to XML files and view the details there.

Note that since Git is a console application, these background tasks create a console window visible to

the current user. This can be changed manually by selecting the "Run whether user is logged in or not"

option in Task Scheduler. This change requires a password input, which is why git maintenance start
does not select it by default.

If you want to customize the background tasks, please rename the tasks so future calls to git
maintenance (start|stop) do not overwrite your custom tasks.

CONFIGURATION
Everything below this line in this section is selectively included from the git-config(1) documentation.

The content is the same as what’s found there:

maintenance.auto

This boolean config option controls whether some commands run git maintenance run --auto after

doing their normal work. Defaults to true.

maintenance.strategy

This string config option provides a way to specify one of a few recommended schedules for

background maintenance. This only affects which tasks are run during git maintenance run
--schedule=X commands, provided no --task=<task> arguments are provided. Further, if a

maintenance.<task>.schedule config value is set, then that value is used instead of the one

provided by maintenance.strategy. The possible strategy strings are:

GIT-MAINTENANCE(1) Git Manual GIT-MAINTENANCE(1)

Git 2.45.2 2024-05-30 GIT-MAINTENANCE(1)

+o

This default setting implies no tasks are run at any schedule.

+o

This setting optimizes for performing small maintenance activities that do not delete any data. This

does not schedule the gc task, but runs the prefetch and commit-graph tasks hourly, the loose-objects
and incremental-repack tasks daily, and the pack-refs task weekly.

maintenance.<task>.enabled

This boolean config option controls whether the maintenance task with name <task> is run when

no --task option is specified to git maintenance run. These config values are ignored if a --task
option exists. By default, only maintenance.gc.enabled is true.

maintenance.<task>.schedule

This config option controls whether or not the given <task> runs during a git maintenance run
--schedule=<frequency> command. The value must be one of "hourly", "daily", or "weekly".

maintenance.commit-graph.auto

This integer config option controls how often the commit-graph task should be run as part of git
maintenance run --auto. If zero, then the commit-graph task will not run with the --auto option. A

negative value will force the task to run every time. Otherwise, a positive value implies the

command should run when the number of reachable commits that are not in the commit-graph file

is at least the value of maintenance.commit-graph.auto. The default value is 100.

maintenance.loose-objects.auto

This integer config option controls how often the loose-objects task should be run as part of git
maintenance run --auto. If zero, then the loose-objects task will not run with the --auto option. A

negative value will force the task to run every time. Otherwise, a positive value implies the

command should run when the number of loose objects is at least the value of

maintenance.loose-objects.auto. The default value is 100.

maintenance.incremental-repack.auto

This integer config option controls how often the incremental-repack task should be run as part of

git maintenance run --auto. If zero, then the incremental-repack task will not run with the --auto
option. A negative value will force the task to run every time. Otherwise, a positive value implies

the command should run when the number of pack-files not in the multi-pack-index is at least the

value of maintenance.incremental-repack.auto. The default value is 10.

GIT
Part of the git(1) suite

GIT-MAINTENANCE(1) Git Manual GIT-MAINTENANCE(1)

Git 2.45.2 2024-05-30 GIT-MAINTENANCE(1)

