
NAME
git-mergetool - Run merge conflict resolution tools to resolve merge conflicts

SYNOPSIS
git mergetool [--tool=<tool>] [-y | --[no-]prompt] [<file>...]

DESCRIPTION
Use git mergetool to run one of several merge utilities to resolve merge conflicts. It is typically run

after git merge.

If one or more <file> parameters are given, the merge tool program will be run to resolve differences

on each file (skipping those without conflicts). Specifying a directory will include all unresolved files

in that path. If no <file> names are specified, git mergetool will run the merge tool program on every

file with merge conflicts.

OPTIONS
-t <tool>, --tool=<tool>

Use the merge resolution program specified by <tool>. Valid values include emerge, gvimdiff,

kdiff3, meld, vimdiff, and tortoisemerge. Run git mergetool --tool-help for the list of valid <tool>

settings.

If a merge resolution program is not specified, git mergetool will use the configuration variable

merge.tool. If the configuration variable merge.tool is not set, git mergetool will pick a suitable

default.

You can explicitly provide a full path to the tool by setting the configuration variable

mergetool.<tool>.path. For example, you can configure the absolute path to kdiff3 by setting

mergetool.kdiff3.path. Otherwise, git mergetool assumes the tool is available in PATH.

Instead of running one of the known merge tool programs, git mergetool can be customized to run

an alternative program by specifying the command line to invoke in a configuration variable

mergetool.<tool>.cmd.

When git mergetool is invoked with this tool (either through the -t or --tool option or the

merge.tool configuration variable) the configured command line will be invoked with $BASE set

to the name of a temporary file containing the common base for the merge, if available; $LOCAL
set to the name of a temporary file containing the contents of the file on the current branch;

$REMOTE set to the name of a temporary file containing the contents of the file to be merged,

and $MERGED set to the name of the file to which the merge tool should write the result of the

GIT-MERGETOOL(1) Git Manual GIT-MERGETOOL(1)

Git 2.42.0 2023-08-21 GIT-MERGETOOL(1)

merge resolution.

If the custom merge tool correctly indicates the success of a merge resolution with its exit code,

then the configuration variable mergetool.<tool>.trustExitCode can be set to true. Otherwise, git

mergetool will prompt the user to indicate the success of the resolution after the custom tool has

exited.

--tool-help

Print a list of merge tools that may be used with --tool.

-y, --no-prompt

Don’t prompt before each invocation of the merge resolution program. This is the default if the

merge resolution program is explicitly specified with the --tool option or with the merge.tool
configuration variable.

--prompt

Prompt before each invocation of the merge resolution program to give the user a chance to skip

the path.

-g, --gui

When git-mergetool is invoked with the -g or --gui option the default merge tool will be read from

the configured merge.guitool variable instead of merge.tool. If merge.guitool is not set, we will

fallback to the tool configured under merge.tool. This may be autoselected using the configuration

variable mergetool.guiDefault.

--no-gui

This overrides a previous -g or --gui setting or mergetool.guiDefault configuration and reads the

default merge tool from the configured merge.tool variable.

-O<orderfile>

Process files in the order specified in the <orderfile>, which has one shell glob pattern per line.

This overrides the diff.orderFile configuration variable (see git-config(1)). To cancel

diff.orderFile, use -O/dev/null.

CONFIGURATION
Everything below this line in this section is selectively included from the git-config(1) documentation.

The content is the same as what’s found there:

mergetool.<tool>.path

Override the path for the given tool. This is useful in case your tool is not in the PATH.

GIT-MERGETOOL(1) Git Manual GIT-MERGETOOL(1)

Git 2.42.0 2023-08-21 GIT-MERGETOOL(1)

mergetool.<tool>.cmd

Specify the command to invoke the specified merge tool. The specified command is evaluated in

shell with the following variables available: BASE is the name of a temporary file containing the

common base of the files to be merged, if available; LOCAL is the name of a temporary file

containing the contents of the file on the current branch; REMOTE is the name of a temporary file

containing the contents of the file from the branch being merged; MERGED contains the name of

the file to which the merge tool should write the results of a successful merge.

mergetool.<tool>.hideResolved

Allows the user to override the global mergetool.hideResolved value for a specific tool. See

mergetool.hideResolved for the full description.

mergetool.<tool>.trustExitCode

For a custom merge command, specify whether the exit code of the merge command can be used

to determine whether the merge was successful. If this is not set to true then the merge target file

timestamp is checked and the merge assumed to have been successful if the file has been updated,

otherwise the user is prompted to indicate the success of the merge.

mergetool.meld.hasOutput

Older versions of meld do not support the --output option. Git will attempt to detect whether meld
supports --output by inspecting the output of meld --help. Configuring mergetool.meld.hasOutput
will make Git skip these checks and use the configured value instead. Setting

mergetool.meld.hasOutput to true tells Git to unconditionally use the --output option, and false
avoids using --output.

mergetool.meld.useAutoMerge

When the --auto-merge is given, meld will merge all non-conflicting parts automatically, highlight

the conflicting parts and wait for user decision. Setting mergetool.meld.useAutoMerge to true tells

Git to unconditionally use the --auto-merge option with meld. Setting this value to auto makes git

detect whether --auto-merge is supported and will only use --auto-merge when available. A value

of false avoids using --auto-merge altogether, and is the default value.

mergetool.vimdiff.layout

The vimdiff backend uses this variable to control how its split windows look like. Applies even if

you are using Neovim (nvim) or gVim (gvim) as the merge tool. See BACKEND SPECIFIC

HINTS section for details.

mergetool.hideResolved

During a merge Git will automatically resolve as many conflicts as possible and write the

MERGED file containing conflict markers around any conflicts that it cannot resolve; LOCAL

GIT-MERGETOOL(1) Git Manual GIT-MERGETOOL(1)

Git 2.42.0 2023-08-21 GIT-MERGETOOL(1)

and REMOTE normally represent the versions of the file from before Git’s conflict resolution.

This flag causes LOCAL and REMOTE to be overwritten so that only the unresolved conflicts are

presented to the merge tool. Can be configured per-tool via the mergetool.<tool>.hideResolved
configuration variable. Defaults to false.

mergetool.keepBackup

After performing a merge, the original file with conflict markers can be saved as a file with a .orig
extension. If this variable is set to false then this file is not preserved. Defaults to true (i.e. keep

the backup files).

mergetool.keepTemporaries

When invoking a custom merge tool, Git uses a set of temporary files to pass to the tool. If the

tool returns an error and this variable is set to true, then these temporary files will be preserved,

otherwise they will be removed after the tool has exited. Defaults to false.

mergetool.writeToTemp

Git writes temporary BASE, LOCAL, and REMOTE versions of conflicting files in the worktree

by default. Git will attempt to use a temporary directory for these files when set true. Defaults to

false.

mergetool.prompt

Prompt before each invocation of the merge resolution program.

mergetool.guiDefault

Set true to use the merge.guitool by default (equivalent to specifying the --gui argument), or auto
to select merge.guitool or merge.tool depending on the presence of a DISPLAY environment

variable value. The default is false, where the --gui argument must be provided explicitly for the

merge.guitool to be used.

TEMPORARY FILES
git mergetool creates *.orig backup files while resolving merges. These are safe to remove once a file

has been merged and its git mergetool session has completed.

Setting the mergetool.keepBackup configuration variable to false causes git mergetool to automatically

remove the backup as files are successfully merged.

BACKEND SPECIFIC HINTS
vimdiff

Description

GIT-MERGETOOL(1) Git Manual GIT-MERGETOOL(1)

Git 2.42.0 2023-08-21 GIT-MERGETOOL(1)

When specifying --tool=vimdiff in git mergetool Git will open Vim with a 4 windows layout

distributed in the following way:

--

| | | |

| LOCAL | BASE | REMOTE |

| | | |

--

| |

| MERGED |

| |

--

LOCAL, BASE and REMOTE are read-only buffers showing the contents of the conflicting file in

specific commits ("commit you are merging into", "common ancestor commit" and "commit you

are merging from" respectively)

MERGED is a writable buffer where you have to resolve the conflicts (using the other read-only

buffers as a reference). Once you are done, save and exit Vim as usual (:wq) or, if you want to

abort, exit using :cq.

Layout configuration

You can change the windows layout used by Vim by setting configuration variable

mergetool.vimdiff.layout which accepts a string where the following separators have special

meaning:

+o

is used to "open a new tab"

+o

is used to "open a new vertical split"

+o

is used to "open a new horizontal split"

+o

is used to indicate which is the file containing the final version after solving the conflicts. If not

present, MERGED will be used by default.

GIT-MERGETOOL(1) Git Manual GIT-MERGETOOL(1)

Git 2.42.0 2023-08-21 GIT-MERGETOOL(1)

The precedence of the operators is this one (you can use

parentheses to change it):

‘@‘ > ‘+‘ > ‘/‘ > ‘,‘

Let’s see some examples to understand how it works:

+o

= "(LOCAL,BASE,REMOTE)/MERGED"

This is exactly the same as the default layout we have already seen.

Note that / has precedence over , and thus the parenthesis are not needed in this case. The next layout

definition is equivalent:

layout = "LOCAL,BASE,REMOTE / MERGED"

+o

= "LOCAL,MERGED,REMOTE"

If, for some reason, we are not interested in the BASE buffer.

--

| | | |

| | | |

| LOCAL | MERGED | REMOTE |

| | | |

| | | |

--

+o

= "MERGED"

Only the MERGED buffer will be shown. Note, however, that all the other ones are still loaded in

vim, and you can access them with the "buffers" command.

--

| |

| |

| MERGED |

GIT-MERGETOOL(1) Git Manual GIT-MERGETOOL(1)

Git 2.42.0 2023-08-21 GIT-MERGETOOL(1)

| |

| |

--

+o

= "@LOCAL,REMOTE"

When MERGED is not present in the layout, you must "mark" one of the buffers with an asterisk.

That will become the buffer you need to edit and save after resolving the conflicts.

--

| | |

| | |

| | |

| LOCAL | REMOTE |

| | |

| | |

| | |

--

+o

= "LOCAL,BASE,REMOTE / MERGED + BASE,LOCAL + BASE,REMOTE"

Three tabs will open: the first one is a copy of the default layout, while the other two only show the

differences between (BASE and LOCAL) and (BASE and REMOTE) respectively.

--

| <TAB #1> | TAB #2 | TAB #3 | |

--

| | | |

| LOCAL | BASE | REMOTE |

| | | |

--

| |

| MERGED |

| |

--

--

| TAB #1 | <TAB #2> | TAB #3 | |

GIT-MERGETOOL(1) Git Manual GIT-MERGETOOL(1)

Git 2.42.0 2023-08-21 GIT-MERGETOOL(1)

--

| | |

| | |

| | |

| BASE | LOCAL |

| | |

| | |

| | |

--

--

| TAB #1 | TAB #2 | <TAB #3> | |

--

| | |

| | |

| | |

| BASE | REMOTE |

| | |

| | |

| | |

--

+o

= "LOCAL,BASE,REMOTE / MERGED + BASE,LOCAL + BASE,REMOTE +
(LOCAL/BASE/REMOTE),MERGED"

Same as the previous example, but adds a fourth tab with the same information as the first tab, with a

different layout.

| TAB #1 | TAB #2 | TAB #3 | <TAB #4> |

| LOCAL | |

|---------------------| |

| BASE | MERGED |

|---------------------| |

| REMOTE | |

Note how in the third tab definition we need to use parenthesis to make , have precedence

GIT-MERGETOOL(1) Git Manual GIT-MERGETOOL(1)

Git 2.42.0 2023-08-21 GIT-MERGETOOL(1)

over /.

Variants

Instead of --tool=vimdiff, you can also use one of these other variants:

+o

to open gVim instead of Vim.

+o

to open Neovim instead of Vim.

When using these variants, in order to specify a custom layout you will have to set configuration

variables mergetool.gvimdiff.layout and mergetool.nvimdiff.layout instead of

mergetool.vimdiff.layout

In addition, for backwards compatibility with previous Git versions, you can also append 1, 2 or 3
to either vimdiff or any of the variants (ex: vimdiff3, nvimdiff1, etc...) to use a predefined layout.

In other words, using --tool=[g,n,]vimdiffx is the same as using --tool=[g,n,]vimdiff and setting

configuration variable mergetool.[g,n,]vimdiff.layout to...

+o

"@LOCAL, REMOTE"

+o

"LOCAL, MERGED, REMOTE"

+o

"MERGED"

Example: using --tool=gvimdiff2 will open gvim with three columns (LOCAL, MERGED and

REMOTE).

GIT
Part of the git(1) suite

GIT-MERGETOOL(1) Git Manual GIT-MERGETOOL(1)

Git 2.42.0 2023-08-21 GIT-MERGETOOL(1)

