GIT-PUSH(1) Git Manual GIT-PUSH(1)

NAME
git-push - Update remote refs along with associated objects

SYNOPSIS
git push [--all | --branches | --mirror | --tags] [--follow-tags] [--atomic] [-n | --dry-run] [--receive-pack=<git-receive-pac
[--repo=<repository>] [-f | --force] [-d | --delete] [--prune] [-V | --verbose]
[-u | --set-upstream] [-0 <string> | --push-option=<string>]
[--[no-]signed|--signed=(truelfal selif-asked)]
[--force-with-lease] =<refname>[: <expect>]] [--force-if-includeg]]
[--no-verify] [<repository> [<refspec>...]]

DESCRIPTION
Updates remote refs using local refs, while sending objects necessary to compl ete the given refs.

Y ou can make interesting things happen to arepository every time you push into it, by setting up hooks
there. See documentation for git-receive-pack(1).

When the command line does not specify where to push with the <repository> argument,
branch.*.remote configuration for the current branch is consulted to determine where to push. If the
configuration ismissing, it defaultsto origin.

When the command line does not specify what to push with <refspec>... arguments or --all, --mirror,
--tags options, the command finds the default <r efspec> by consulting remote.* .push configuration,
and if it is not found, honors push.default configuration to decide what to push (See git-config(1) for
the meaning of push.default).

When neither the command-line nor the configuration specify what to push, the default behavior is
used, which corresponds to the ssmple value for push.default: the current branch is pushed to the
corresponding upstream branch, but as a safety measure, the push is aborted if the upstream branch
does not have the same name as the local one.

OPTIONS
<repository>
The "remote" repository that is destination of a push operation. This parameter can be either a
URL (seethe section GIT URLS below) or the name of aremote (see the section REMOTES
below).

<refspec>...
Specify what destination ref to update with what source object. The format of a <refspec>

Git 2.42.0 2023-08-21 GIT-PUSH(1)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

parameter is an optional plus +, followed by the source object <src>, followed by acolon :,
followed by the destination ref <dst>.

The <src> is often the name of the branch you would want to push, but it can be any arbitrary
"SHA-1 expression"”, such as master~4 or HEAD (see gitrevisions(7)).

The <dst> tells which ref on the remote side is updated with this push. Arbitrary expressions
cannot be used here, an actual ref must be named. If git push [<repository>] without any
<refgpec> argument is set to update some ref at the destination with <src> with
remote.<repository>.push configuration variable, :<dst> part can be omitted--such a push will
update aref that <src> normally updates without any <r efspec> on the command line. Otherwise,
missing :<dst> meansto update the same ref asthe <src>.

If <dst> doesn’t start with refs/ (e.g. refs/heads/master) we will try to infer wherein refs* on the
destination <repository> it belongs based on the type of <src> being pushed and whether <dst> is
ambiguous.

o
<dst> unambiguously refersto aref on the <repository> remote, then push to that ref.

o
<src> resolves to aref starting with refs/heads/ or refs/tags/, then prepend that to <dst>.

o

ambiguity resolutions might be added in the future, but for now any other cases will error out with an
error indicating what we tried, and depending on the advice.pushUnqualifiedRefname configuration
(see git-config(1)) suggest what refs/ namespace you may have wanted to push to.

The abject referenced by <src> is used to update the <dst> reference on the remote side. Whether
thisis allowed depends on where in refs/* the <dst> reference lives as described in detail below,
in those sections "update” means any modifications except deletes, which as noted after the next

few sections are treated differently.

Therefs’heads/* namespace will only accept commit objects, and updates only if they can be
fast-forwarded.

The refg/tags™* namespace will accept any kind of object (as commits, trees and blobs can be
tagged), and any updates to them will be rejected.

It's possible to push any type of object to any namespace outside of refs/{tags,heads}/*. In the

Git 2.42.0 2023-08-21 GIT-PUSH(1)

GIT-PUSH(1)

--all, --branches

Git Manual GIT-PUSH(1)

case of tags and commits, these will be treated asif they were the commits
inside refs’heads/* for the purposes of whether the update is allowed.

|.e. afast-forward of commits and tags outside r efs/{tags,heads}/* is
allowed, even in cases where what’ s being fast-forwarded is not a commit,
but atag object which happensto point to a new commit whichisa
fast-forward of the commit the last tag (or commit) it’s replacing.
Replacing atag with an entirely different tag is also allowed, if it pointsto
the same commit, as well as pushing a peeled tag, i.e. pushing the commit
that existing tag object points to, or a new tag object which an existing
commit pointsto.

Tree and blob objects outside of refg/{tags,heads}/* will be treated the
same way asif they wereinside refs/tags’*, any update of them will be
rejected.

All of the rules described above about what' s not allowed as an update can
be overridden by adding an the optional leading + to arefspec (or using
--for ce command line option). The only exception to thisis that no amount
of forcing will make the refsheads/* namespace accept a non-commit
object. Hooks and configuration can also override or amend these rules,
seee.g. receive.denyNonFastForwardsin git-config(1) and pre-receive
and update in githooks(5).

Pushing an empty <src> allows you to delete the <dst> ref from the remote
repository. Deletions are always accepted without aleading + in the
refspec (or --for ce), except when forbidden by configuration or hooks. See
receive.denyDeletesin git-config(1) and pre-receive and updatein
githooks(5).

The special refspec : (or +: to alow non-fast-forward updates) directs Git
to push "matching" branches: for every branch that exists on the local side,
the remote side is updated if a branch of the same name already exists on
the remote side.

tag <tag> means the same as r efgtags/<tag>:r efgtags/<tag>.

Push al branches (i.e. refs under r efsheads/); cannot be used with other <refspec>.

Git2.42.0

2023-08-21 GIT-PUSH(1)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

--prune
Remove remote branches that don’t have alocal counterpart. For example a remote branch tmp
will be removed if alocal branch with the same name doesn’t exist any more. This also respects
refspecs, e.g. git push --pruneremote refsheads™:refstmp/* would make sure that remote
refstmp/foo will be removed if refs’/heads/foo doesn't exist.

--mirror
Instead of naming each ref to push, specifiesthat all refs under refs/ (which includes but is not
limited to refs’headd, refsiremotes/, and refs/tags/) be mirrored to the remote repository. Newly
created local refswill be pushed to the remote end, locally updated refs will be force updated on
the remote end, and deleted refs will be removed from the remote end. This is the default if the
configuration option remote.<remote>.mirror is set.

-n, --dry-run
Do everything except actually send the updates.

--porcelain
Produce machine-readable output. The output status line for each ref will be tab-separated and
sent to stdout instead of stderr. The full symbolic names of the refs will be given.

-d, --delete
All listed refs are deleted from the remote repository. Thisis the same as prefixing all refswith a
colon.

--tags

All refs under refs/tags are pushed, in addition to refspecs explicitly listed on the command line.

--follow-tags
Push all the refs that would be pushed without this option, and also push annotated tags in
refg/tags that are missing from the remote but are pointing at commit-ish that are reachable from
the refs being pushed. This can also be specified with configuration variable push.followTags. For
more information, see push.followTagsin git-config(1).

--[no-]signed, --signed=(trueffal selif-asked)
GPG-sign the push request to update refs on the receiving side, to allow it to be checked by the
hooks and/or be logged. If false or --no-signed, no signing will be attempted. If true or --signed,
the push will fail if the server does not support signed pushes. If set to if-asked, sign if and only if
the server supports signed pushes. The push will also fail if the actual call to gpg --sign fails. See
git-receive-pack(1) for the details on the receiving end.

Git 2.42.0 2023-08-21 GIT-PUSH(2)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

--[no-]atomic
Use an atomic transaction on the remote side if available. Either all refs are updated, or on error,
no refs are updated. If the server does not support atomic pushes the push will fail.

-0 <option>, --push-option=<option>
Transmit the given string to the server, which passes them to the pre-receive as well asthe
post-receive hook. The given string must not contain aNUL or LF character. When multiple
--push-option=<option> are given, they are all sent to the other side in the order listed on the
command line. When no --push-option=<option> is given from the command line, the values of
configuration variable push.pushOption are used instead.

--receive-pack=<git-receive-pack>, --exec=<git-receive-pack>
Path to the git-receive-pack program on the remote end. Sometimes useful when pushing to a
remote repository over ssh, and you do not have the program in a directory on the default $PATH.

--[no-]force-with-lease, --force-with-lease=<refname>, --force-with-lease=<refname>:<expect>
Usually, "git push” refusesto update a remote ref that is not an ancestor of the local ref used to
overwrite it.

This option overrides this restriction if the current value of the remote ref is the expected value.
"git push"” fails otherwise.

Imagine that you have to rebase what you have already published. Y ou will have to bypass the
"must fast-forward" rule in order to replace the history you originaly published with the rebased
history. If somebody else built on top of your original history while you are rebasing, the tip of the
branch at the remote may advance with their commit, and blindly pushing with --for ce will lose
their work.

This option allows you to say that you expect the history you are updating is what you rebased and
want to replace. If the remote ref still points at the commit you specified, you can be sure that no
other people did anything to theref. It islike taking a"lease" on the ref without explicitly locking
it, and the remote ref is updated only if the "lease” is still valid.

--for ce-with-lease alone, without specifying the details, will protect all remote refs that are going
to be updated by requiring their current value to be the same as the remote-tracking branch we
have for them.

--for ce-with-lease=<r efname>, without specifying the expected value, will protect the named ref

(alone), if it isgoing to be updated, by requiring its current value to be the same as the
remote-tracking branch we have for it.

Git 2.42.0 2023-08-21 GIT-PUSH(2)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

--for ce-with-lease=<r efname>: <expect> will protect the named ref (alone), if it is going to be
updated, by requiring its current value to be the same as the specified value <expect> (which is
allowed to be different from the remote-tracking branch we have for the refname, or we do not
even have to have such a remote-tracking branch when this form is used). If <expect> isthe empty
string, then the named ref must not already exist.

Note that all forms other than --for ce-with-lease=<r efname>: <expect> that specifies the expected
current value of the ref explicitly are still experimental and their semantics may change as we gain
experience with this feature.

"--no-force-with-lease" will cancel all the previous --force-with-lease on the command line.

A genera note on safety: supplying this option without an expected value, i.e. as

--for ce-with-lease or --for ce-with-lease=<r efname> interacts very badly with anything that
implicitly runs git fetch on the remote to be pushed to in the background, e.g. git fetch origin on
your repository in acronjob.

The protection it offers over --for ce is ensuring that subsequent changes your work wasn't based
on aren't clobbered, but thisistrivially defeated if some background processis updating refsin
the background. We don’t have anything except the remote tracking info to go by as a heuristic for
refs you' re expected to have seen & are willing to clobber.

If your editor or some other system is running git fetch in the background for you away to
mitigate thisisto simply set up another remote:

git remote add origin-push $(git config remote.origin.url)
git fetch origin-push

Now when the background process runs git fetch origin the references on origin-push won’t be
updated, and thus commands like:

git push --force-with-lease origin-push
Will fail unless you manually run git fetch origin-push. This method is of course entirely defeated
by something that runs git fetch --all, in that case you’ d need to either disable it or do something
more tedious like:

git fetch # update 'master’ from remote

git tag base master # mark our base point
git rebase -i master # rewrite some commits

Git 2.42.0 2023-08-21 GIT-PUSH(1)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

git push --force-with-lease=master:base master:master

|.e. create abase tag for versions of the upstream code that you’ ve seen and are willing to
overwrite, then rewrite history, and finally force push changes to master if the remote version is
still at base, regardless of what your local remotes/origin/master has been updated to in the
background.

Alternatively, specifying --for ce-if-includes as an ancillary option along with

--for ce-with-lease[=<refname>] (i.e., without saying what exact commit the ref on the remote side
must be pointing at, or which refs on the remote side are being protected) at the time of "push”

will verify if updates from the remote-tracking refs that may have been implicitly updated in the
background are integrated locally before allowing aforced update.

-f, --force
Usually, the command refuses to update a remote ref that is not an ancestor of the local ref used to
overwriteit. Also, when --for ce-with-lease option is used, the command refuses to update a
remote ref whose current value does not match what is expected.

This flag disables these checks, and can cause the remote repository to lose commits; use it with
care.

Note that --for ce appliesto all the refs that are pushed, hence using it with push.default set to
matching or with multiple push destinations configured with remote.* .push may overwrite refs
other than the current branch (including local refsthat are strictly behind their remote
counterpart). To force a push to only one branch, use a+ in front of the refspec to push (e.g git
push origin +master to force a push to the master branch). See the <refspec>... section above for
details.

--[no-]force-if-includes
Force an update only if the tip of the remote-tracking ref has been integrated locally.

This option enables a check that verifiesif the tip of the remote-tracking ref is reachable from one
of the "reflog" entries of the local branch based in it for arewrite. The check ensures that any
updates from the remote have been incorporated locally by rejecting the forced update if that is

not the case.

If the option is passed without specifying --for ce-with-lease, or specified along with
--for ce-with-lease=<r efname>: <expect>, it isa "no-op".

Specifying --no-for ce-if-includes disables this behavior.

Git 2.42.0 2023-08-21 GIT-PUSH(2)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

--repo=<repository>
This option is equivalent to the <repository> argument. If both are specified, the command-line
argument takes precedence.

-u, --Set-upstream
For every branch that is up to date or successfully pushed, add upstream (tracking) reference, used
by argument-less git-pull(1) and other commands. For more information, see
branch.<name>.mergein git-config(1).

--[no-]thin
These options are passed to git-send-pack(1). A thin transfer significantly reduces the amount of
sent data when the sender and receiver share many of the same objects in common. The default is
--thin.

-q, --quiet
Suppress al output, including the listing of updated refs, unless an error occurs. Progressis not
reported to the standard error stream.

-v, --verbose
Run verbosely.
--progress

Progress statusis reported on the standard error stream by default when it is attached to aterminal,
unless -q is specified. This flag forces progress status even if the standard error stream is not
directed to aterminal.

--no-recurse-submodul es, --recurse-submodul es=check|on-demand|only|no
May be used to make sure al submodule commits used by the revisions to be pushed are available
on aremote-tracking branch. If check isused Git will verify that all submodule commits that
changed in the revisions to be pushed are available on at least one remote of the submodule. If any
commits are missing the push will be aborted and exit with non-zero status. If on-demand is used
al submodules that changed in the revisions to be pushed will be pushed. If on-demand was not
ableto push all necessary revisionsit will also be aborted and exit with non-zero status. If only is
used all submodules will be pushed while the superproject is left unpushed. A value of no or using
--no-recur se-submodules can be used to override the push.recurseSubmodul es configuration
variable when no submodule recursion is required.

When using on-demand or only, if a submodule has a

"push.recurseSubmodul es={ on-demand,only} " or "submodule.recurse”" configuration, further
recursion will occur. In this case, "only" is treated as "on-demand".

Git 2.42.0 2023-08-21 GIT-PUSH(1)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

--[no-]verify
Toggle the pre-push hook (see githooks(5)). The default is --verify, giving the hook achanceto
prevent the push. With --no-verify, the hook is bypassed completely.

-4, --ipv4
Use |Pv4 addresses only, ignoring 1Pv6 addresses.

-6, --ipv6
Use IPv6 addresses only, ignoring 1Pv4 addresses.

GIT URLS
In general, URL s contain information about the transport protocol, the address of the remote server,
and the path to the repository. Depending on the transport protocol, some of thisinformation may be

absent.

Git supports ssh, git, http, and https protocols (in addition, ftp, and ftps can be used for fetching, but
thisisinefficient and deprecated; do not use it).

The native transport (i.e. git:// URL) does no authentication and should be used with caution on
unsecured networks.

The following syntaxes may be used with them:

An dternative scp-like syntax may also be used with the ssh protocol:

This syntax is only recognized if there are no slashes before the first colon. This helps differentiate a
local path that contains a colon. For example the local path foo:bar could be specified as an absolute
path or ./foo:bar to avoid being misinterpreted as an ssh url.

The ssh and git protocols additionally support ~username expansion:

Git 2.42.0 2023-08-21 GIT-PUSH(2)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

For local repositories, also supported by Git natively, the following syntaxes may be used:

These two syntaxes are mostly equivalent, except when cloning, when the former implies --local
option. See git-clone(1) for details.

git clone, git fetch and git pull, but not git push, will aso accept a suitable bundlefile. See git-
bundle(l).

When Git doesn’t know how to handle a certain transport protocoal, it attempts to use the
remote-<transport> remote helper, if one exists. To explicitly request aremote helper, the following
syntax may be used:

where <address> may be a path, a server and path, or an arbitrary URL-like string recognized by the
specific remote helper being invoked. See gitremote-helper 5(7) for details.

If there are alarge number of similarly-named remote repositories and you want to use a different
format for them (such that the URL s you use will be rewritten into URL s that work), you can create a

configuration section of the form:

[url "<actual url base>"]
insteadOf = <other url base>
For example, with this:
[url "git://git.host.xz/"]

insteadOf = host.xz:/path/to/
insteadOf = work:

Git 2.42.0 2023-08-21 GIT-PUSH(1)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

aURL like "work:repo.git" or like "host.xz:/path/to/repo.git" will be rewritten in any context that takes
aURL to be "git://git.host.xz/repo.git".

If you want to rewrite URLs for push only, you can create a configuration section of the form:
[url "<actual url base>"]
pushl nsteadOf = <other url base>
For example, with this:
[url "ssh://fexample.org/"]
pushinsteadOf = git://example.org/
aURL like "git://example.org/path/to/repo.git" will be rewritten to "ssh://exampl e.org/path/to/repo.git”

for pushes, but pullswill still use the original URL.

REMOTES
The name of one of the following can be used instead of a URL as <repository> argument:

®
remote in the Git configuration file: $GI T_DIR/config,

®
fileinthe $GIT_DIR/remotes directory, or

®
fileinthe $GIT_DIR/branches directory.

All of these also allow you to omit the refspec from the command line because they each contain a
refspec which git will use by default.

Named remote in configuration file
Y ou can choose to provide the name of a remote which you had previously configured using git-

remote(1), git-config(1) or even by a manual edit to the $GI1T_DIR/config file. The URL of this remote

will be used to access the repository. The refspec of this remote will be used by default when you do
not provide arefspec on the command line. The entry in the config file would appear like this:

[remote "<name>"]

Git 2.42.0 2023-08-21 GIT-PUSH(2)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

url = <URL>
pushurl = <pushurl>
push = <refspec>
fetch = <refspec>

The <pushurl> isused for pushes only. It is optional and defaults to <URL >. Pushing to a remote
affects all defined pushurls or to all defined urlsif no pushurls are defined. Fetch, however, will only
fetch from the first defined url if multiple urls are defined.

Named filein $GIT_DIR/remotes
Y ou can choose to provide the name of afilein $GIT_DIR/remotes. The URL in thisfile will be used
to access the repository. The refspec in thisfile will be used as default when you do not provide a
refspec on the command line. Thisfile should have the following format:

URL: one of the above URL format

Push: <refspec>
Pull: <refspec>

Push: lines are used by git push and Pull: lines are used by git pull and git fetch. Multiple Push: and
Pull: lines may be specified for additional branch mappings.

Named filein $GIT_DIR/branches
Y ou can choose to provide the name of afilein $GIT_DIR/branches. The URL in thisfile will be used

to access the repository. This file should have the following format:

<URL>#<head>

<URL > isrequired; #<head> is optional.

Depending on the operation, git will use one of the following refspecs, if you don’t provide one on the
command line. <branch> isthe name of thisfilein $GI T_DIR/branches and <head> defaults to master.

git fetch uses:

refs’heads/<head>:ref 9heads/<branch>

Git 2.42.0 2023-08-21 GIT-PUSH(2)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

git push uses:

HEAD:refs’heads/<head>

OUTPUT
The output of "git push” depends on the transport method used; this section describes the output when

pushing over the Git protocol (either locally or via ssh).

The status of the push is output in tabular form, with each line representing the status of a single ref.
Each lineis of the form:

<flag> <summary> <from> -> <to> (<reason>)

If --porcelain is used, then each line of the output is of the form:

<flag> \t <from>:<to> \t <summary> (<reason>)

The status of up-to-date refsis shown only if --porcelain or --verbose option is used.

flag
A single character indicating the status of the ref:

(space)
for a successfully pushed fast-forward,;
for a successful forced update;
for asuccessfully deleted ref;

for a successfully pushed new ref;

for aref that was rejected or failed to push; and

Git 2.42.0 2023-08-21 GIT-PUSH(1)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

for aref that was up to date and did not need pushing.

summary
For a successfully pushed ref, the summary shows the old and new values of the ref in aform
suitable for using as an argument to git log (thisis <old>..<new> in most cases, and
<old>...<new> for forced non-fast-forward updates).

For afailed update, more details are given:

rejected
Git did not try to send theref at al, typically becauseit is not afast-forward and you did not
force the update.

remote rejected
The remote end refused the update. Usually caused by a hook on the remote side, or because
the remote repository has one of the following safety optionsin effect:
receive.denyCurrentBranch (for pushes to the checked out branch),
receive.denyNonFastForwar ds (for forced non-fast-forward updates), receive.denyDeletes or
receive.denyDeleteCurrent. See git-config(l).

remote failure
The remote end did not report the successful update of the ref, perhaps because of a
temporary error on the remote side, a break in the network connection, or other transient
error.

from
The name of the local ref being pushed, minus its refs/<type>/ prefix. In the case of deletion, the
name of the local ref is omitted.

to
The name of the remote ref being updated, minusits refs/<type>/ prefix.

reason
A human-readable explanation. In the case of successfully pushed refs, no explanation is needed.
For afailed ref, the reason for failure is described.

NOTE ABOUT FAST-FORWARDS

When an update changes a branch (or more in general, aref) that used to point at commit A to point at
another commit B, it is called afast-forward update if and only if B is adescendant of A.

Git 2.42.0 2023-08-21 GIT-PUSH(1)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

In afast-forward update from A to B, the set of commits that the original commit A built on top of isa
subset of the commits the new commit B builds on top of. Hence, it does not lose any history.

In contrast, a non-fast-forward update will lose history. For example, suppose you and somebody else
started at the same commit X, and you built a history leading to commit B while the other person built
ahistory leading to commit A. The history looks like this:

Further suppose that the other person aready pushed changes leading to A back to the origina
repository from which you two obtained the original commit X.

The push done by the other person updated the branch that used to point at commit X to point at
commit A. It isafast-forward.

But if you try to push, you will attempt to update the branch (that now points at A) with commit B.
This does not fast-forward. If you did so, the changes introduced by commit A will be lost, because

everybody will now start building on top of B.

The command by default does not allow an update that is not a fast-forward to prevent such loss of
history.

If you do not want to lose your work (history from X to B) or the work by the other person (history
from X to A), you would need to first fetch the history from the repository, create a history that

contains changes done by both parties, and push the result back.

Y ou can perform "git pull”, resolve potentia conflicts, and "git push" the result. A "git pull” will create
amerge commit C between commits A and B.

B---C
/1
XA

Updating A with the resulting merge commit will fast-forward and your push will be accepted.

Alternatively, you can rebase your change between X and B on top of A, with "git pull --rebase", and

Git 2.42.0 2023-08-21 GIT-PUSH(1)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

push the result back. The rebase will create a new commit D that builds the change between X and B
on top of A.

Again, updating A with this commit will fast-forward and your push will be accepted.

There is another common situation where you may encounter non-fast-forward rejection when you try
to push, and it is possible even when you are pushing into a repository nobody else pushes into. After
you push commit A yourself (in the first picture in this section), replace it with "git commit --amend"”
to produce commit B, and you try to push it out, because forgot that you have pushed A out already. In
such acase, and only if you are certain that nobody in the meantime fetched your earlier commit A
(and started building on top of it), you can run "git push --force" to overwrite it. In other words, "git
push --force" is a method reserved for a case where you do mean to lose history.

EXAMPLES
git push
Workslike git push <remote>, where <remote> is the current branch’s remote (or origin, if no
remote is configured for the current branch).

git push origin
Without additional configuration, pushes the current branch to the configured upstream
(branch.<name>.mer ge configuration variable) if it has the same name as the current branch, and
errors out without pushing otherwise.

The default behavior of this command when no <refspec> is given can be configured by setting
the push option of the remote, or the push.default configuration variable.

For example, to default to pushing only the current branch to origin use git config
remote.origin.push HEAD. Any valid <refspec> (like the ones in the examples below) can be
configured as the default for git push origin.

git push origin :
Push "matching" branchesto origin. See <refspec> in the OPTIONS section above for a

description of "matching" branches.

git push origin master

Git 2.42.0 2023-08-21 GIT-PUSH(1)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

Find aref that matches master in the source repository (most likely, it would find
refs’heads/master), and update the sameref (e.g. refs’lheads/master) in origin repository with it. If
master did not exist remotely, it would be created.

git push origin HEAD
A handy way to push the current branch to the same name on the remote.

git push mothership master:satellite/master dev:satellite/dev
Use the source ref that matches master (e.g. refsYheads/master) to update the ref that matches
satellite/master (most probably refs/remotes/satellite/master) in the mother ship repository; do the
same for dev and satellite/dev.

See the section describing <refspec>... above for a discussion of the matching semantics.

Thisisto emulate git fetch run on the mother ship using git push that is run in the opposite
direction in order to integrate the work done on satellite, and is often necessary when you can only
make connection in one way (i.e. satellite can ssh into mothership but mothership cannot initiate
connection to satellite because the latter is behind a firewall or does not run sshd).

After running this git push on the satellite machine, you would ssh into the mother ship and run git
mer ge there to complete the emulation of git pull that were run on mother ship to pull changes
made on satellite.

git push origin HEAD: master
Push the current branch to the remote ref matching master in the origin repository. Thisformis
convenient to push the current branch without thinking about its local name.

git push origin master :refsheads/experimental
Create the branch experimental in the origin repository by copying the current master branch. This
form is only needed to create a new branch or tag in the remote repository when the local name
and the remote name are different; otherwise, the ref name on its own will work.

git push origin :experimental
Find aref that matches experimental in the origin repository (e.g. refsheads/experimental), and
deleteit.

git push origin +dev:master
Update the origin repository’ s master branch with the dev branch, allowing non-fast-forward
updates. Thiscan leave unreferenced commits dangling in the origin repository. Consider the
following situation, where a fast-forward is not possible:

Git 2.42.0 2023-08-21 GIT-PUSH(1)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

0---0---0---A---B origin/master
\
X---Y---Z dev

The above command would change the origin repository to

A---B (unnamed branch)
/
0---0---0---X---Y---Z master

Commits A and B would no longer belong to a branch with a symbolic name, and so would be
unreachable. As such, these commits would be removed by agit gc command on the origin
repository.

SECURITY
The fetch and push protocols are not designed to prevent one side from stealing data from the other
repository that was not intended to be shared. If you have private data that you need to protect from a
malicious peer, your best option isto store it in another repository. This appliesto both clients and
servers. |n particular, namespaces on a server are not effective for read access control; you should only
grant read access to a namespace to clients that you would trust with read access to the entire
repository.

The known attack vectors are as follows;

1.
victim sends "have" lines advertising the IDs of abjectsit hasthat are not explicitly intended to be shared
but can be used to optimize the transfer if the peer al'so has them. The attacker chooses an object ID X to
steal and sendsaref to X, but isn’t required to send the content of X because the victim aready hasiit.
Now the victim believes that the attacker has X, and it sends the content of X back to the attacker later.
(This attack is most straightforward for a client to perform on a server, by creating aref to X in the
namespace the client has access to and then fetching it. The most likely way for a server to perform it on a
clientisto "merge" X into a public branch and hope that the user does additional work on this branch and
pushes it back to the server without noticing the merge.)

2.

in #1, the attacker chooses an object ID X to steal. The victim sends an object Y that the attacker already
has, and the attacker falsely claimsto have X and not Y, so the victim sends Y as adeltaagainst X. The
deltarevealsregions of X that are similar to Y to the attacker.

CONFIGURATION

Git 2.42.0 2023-08-21 GIT-PUSH(1)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

Everything below thislinein this section is selectively included from the git-config(1) documentation.
The content is the same as what’ s found there:

push.autoSetupRemote
If set to "true" assume --set-upstream on default push when no upstream tracking exists for the
current branch; this option takes effect with push.default options simple, upstream, and current. It
isuseful if by default you want new branches to be pushed to the default remote (like the behavior
of push.default=current) and you also want the upstream tracking to be set. Workflows most likely
to benefit from this option are simple central workflows where all branches are expected to have
the same name on the remote.

push.default
Defines the action git push should take if no refspec is given (whether from the command-line,
config, or elsewhere). Different values are well-suited for specific workflows; for instance, in a
purely central workflow (i.e. the fetch source is equal to the push destination), upstream is
probably what you want. Possible values are:

®
- do not push anything (error out) unless arefspec is given. Thisis primarily meant for people who
want to avoid mistakes by always being explicit.

;)
- push the current branch to update a branch with the same name on the receiving end. Worksin both
central and non-central workflows.

®
- push the current branch back to the branch whaose changes are usually integrated into the current
branch (which is called @{upstream}). This mode only makes sense if you are pushing to the same

repository you would normally pull from (i.e. central workflow).

o
- Thisis a deprecated synonym for upstream.

o
- pushes the current branch with the same name on the remote.

If you are working on a centralized workflow (pushing to the same repository you pull from, which
istypically origin), then you need to configure an upstream branch with the same name.

This mode isthe default since Git 2.0, and is the safest option suited for beginners.

Git 2.42.0 2023-08-21 GIT-PUSH(2)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

®

- push all branches having the same name on both ends. This makes the repository you are pushing to
remember the set of branches that will be pushed out (e.g. if you always push maint and master there
and no other branches, the repository you push to will have these two branches, and your local maint
and master will be pushed there).

To use this mode effectively, you have to make sure all the branches you would push out are ready to
be pushed out before running git push, as the whole point of this mode isto allow you to push all of
the branches in one go. If you usually finish work on only one branch and push out the result, while
other branches are unfinished, this mode is not for you. Also this mode is not suitable for pushing
into a shared central repository, as other people may add new branches there, or update the tip of
existing branches outside your contral.

This used to be the default, but not since Git 2.0 (simpleisthe new default).

push.followTags
If set to true enable --follow-tags option by default. Y ou may override this configuration at time of
push by specifying --no-follow-tags.

push.gpgSign
May be set to a boolean value, or the string if-asked. A true value causes all pushes to be GPG
signed, asif --signed is passed to git-push(1). The string if-asked causes pushes to be signed if the
server supportsit, asif --signed=if-asked is passed to git push. A false value may override avalue
from alower-priority config file. An explicit command-line flag aways overrides this config
option.

push.pushOption
When no --push-option=<option> argument is given from the command line, git push behaves as
if each <value> of thisvariable is given as --push-option=<value>.

Thisisamulti-valued variable, and an empty value can be used in a higher priority configuration
file (e.g. .git/configin arepository) to clear the values inherited from alower priority
configuration files (e.g. $HOME/.gitconfig).

Example:

[etc/gitconfig

push.pushoption = a
push.pushoption = b

Git2.42.0 2023-08-21 GIT-PUSH(1)

GIT-PUSH(1) Git Manual GIT-PUSH(1)

~/.gitconfig
push.pushoption = ¢

repo/.git/config
push.pushoption =
push.pushoption = b

Thiswill result in only b (aand c are cleared).

push.recurseSubmodules
May be "check", "on-demand", "only", or "no", with the same behavior as that of "push
--recurse-submodules’. If not set, no is used by default, unless submodule.recurseis set (in which

case a true value means on-demand).

push.useForcel fIncludes
If set to "true", it is equivalent to specifying --for ce-if-includes as an option to git-push(1) in the
command line. Adding --no-for ce-if-includes at the time of push overrides this configuration
setting.

push.negotiate
If set to "true”, attempt to reduce the size of the packfile sent by rounds of negotiation in which the
client and the server attempt to find commitsin common. If "false”, Git will rely solely on the
server’ s ref advertisement to find commits in common.

push.useBitmaps

If set to "false", disable use of bitmaps for "git push” even if pack.useBitmapsis "true", without
preventing other git operations from using bitmaps. Default istrue.

Part of the git(1) suite

Git 2.42.0 2023-08-21 GIT-PUSH(1)

