
NAME
git-read-tree - Reads tree information into the index

SYNOPSIS
git read-tree [(-m [--trivial] [--aggressive] | --reset | --prefix=<prefix>)

[-u | -i]] [--index-output=<file>] [--no-sparse-checkout]

(--empty | <tree-ish1> [<tree-ish2> [<tree-ish3>]])

DESCRIPTION
Reads the tree information given by <tree-ish> into the index, but does not actually update any of the

files it "caches". (see: git-checkout-index(1))

Optionally, it can merge a tree into the index, perform a fast-forward (i.e. 2-way) merge, or a 3-way

merge, with the -m flag. When used with -m, the -u flag causes it to also update the files in the work

tree with the result of the merge.

Trivial merges are done by git read-tree itself. Only conflicting paths will be in unmerged state when

git read-tree returns.

OPTIONS
-m

Perform a merge, not just a read. The command will refuse to run if your index file has unmerged

entries, indicating that you have not finished previous merge you started.

--reset

Same as -m, except that unmerged entries are discarded instead of failing. When used with -u,

updates leading to loss of working tree changes or untracked files or directories will not abort the

operation.

-u

After a successful merge, update the files in the work tree with the result of the merge.

-i

Usually a merge requires the index file as well as the files in the working tree to be up to date with

the current head commit, in order not to lose local changes. This flag disables the check with the

working tree and is meant to be used when creating a merge of trees that are not directly related to

the current working tree status into a temporary index file.

-n, --dry-run

GIT-READ-TREE(1) Git Manual GIT-READ-TREE(1)

Git 2.42.0 2023-08-21 GIT-READ-TREE(1)

Check if the command would error out, without updating the index or the files in the working tree

for real.

-v

Show the progress of checking files out.

--trivial

Restrict three-way merge by git read-tree to happen only if there is no file-level merging required,

instead of resolving merge for trivial cases and leaving conflicting files unresolved in the index.

--aggressive

Usually a three-way merge by git read-tree resolves the merge for really trivial cases and leaves

other cases unresolved in the index, so that porcelains can implement different merge policies.

This flag makes the command resolve a few more cases internally:

+o

one side removes a path and the other side leaves the path unmodified. The resolution is to remove

that path.

+o

both sides remove a path. The resolution is to remove that path.

+o

both sides add a path identically. The resolution is to add that path.

--prefix=<prefix>

Keep the current index contents, and read the contents of the named tree-ish under the directory at

<prefix>. The command will refuse to overwrite entries that already existed in the original index

file.

--index-output=<file>

Instead of writing the results out to $GIT_INDEX_FILE, write the resulting index in the named

file. While the command is operating, the original index file is locked with the same mechanism

as usual. The file must allow to be rename(2)ed into from a temporary file that is created next to

the usual index file; typically this means it needs to be on the same filesystem as the index file

itself, and you need write permission to the directories the index file and index output file are

located in.

--[no-]recurse-submodules

Using --recurse-submodules will update the content of all active submodules according to the

GIT-READ-TREE(1) Git Manual GIT-READ-TREE(1)

Git 2.42.0 2023-08-21 GIT-READ-TREE(1)

commit recorded in the superproject by calling read-tree recursively, also

setting the submodules’ HEAD to be detached at that commit.

--no-sparse-checkout

Disable sparse checkout support even if core.sparseCheckout is true.

--empty

Instead of reading tree object(s) into the index, just empty it.

-q, --quiet

Quiet, suppress feedback messages.

<tree-ish#>

The id of the tree object(s) to be read/merged.

MERGING
If -m is specified, git read-tree can perform 3 kinds of merge, a single tree merge if only 1 tree is given,

a fast-forward merge with 2 trees, or a 3-way merge if 3 or more trees are provided.

Single Tree Merge
If only 1 tree is specified, git read-tree operates as if the user did not specify -m, except that if the

original index has an entry for a given pathname, and the contents of the path match with the tree being

read, the stat info from the index is used. (In other words, the index’s stat()s take precedence over the

merged tree’s).

That means that if you do a git read-tree -m <newtree> followed by a git checkout-index -f -u -a, the

git checkout-index only checks out the stuff that really changed.

This is used to avoid unnecessary false hits when git diff-files is run after git read-tree.

Two Tree Merge
Typically, this is invoked as git read-tree -m $H $M, where $H is the head commit of the current

repository, and $M is the head of a foreign tree, which is simply ahead of $H (i.e. we are in a

fast-forward situation).

When two trees are specified, the user is telling git read-tree the following:

1.

current index and work tree is derived from $H, but the user may have local changes in them since $H.

GIT-READ-TREE(1) Git Manual GIT-READ-TREE(1)

Git 2.42.0 2023-08-21 GIT-READ-TREE(1)

2.

user wants to fast-forward to $M.

In this case, the git read-tree -m $H $M command makes sure that no local change is lost as the result

of this "merge". Here are the "carry forward" rules, where "I" denotes the index, "clean" means that

index and work tree coincide, and "exists"/"nothing" refer to the presence of a path in the specified

commit:

I H M Result

0 nothing nothing nothing (does not happen)

1 nothing nothing exists use M

2 nothing exists nothing remove path from index

3 nothing exists exists, use M if "initial checkout",

H == M keep index otherwise

exists, fail

H != M

clean I==H I==M

4 yes N/A N/A nothing nothing keep index

5 no N/A N/A nothing nothing keep index

6 yes N/A yes nothing exists keep index

7 no N/A yes nothing exists keep index

8 yes N/A no nothing exists fail

9 no N/A no nothing exists fail

10 yes yes N/A exists nothing remove path from index

11 no yes N/A exists nothing fail

12 yes no N/A exists nothing fail

13 no no N/A exists nothing fail

clean (H==M)

14 yes exists exists keep index

15 no exists exists keep index

clean I==H I==M (H!=M)

GIT-READ-TREE(1) Git Manual GIT-READ-TREE(1)

Git 2.42.0 2023-08-21 GIT-READ-TREE(1)

16 yes no no exists exists fail

17 no no no exists exists fail

18 yes no yes exists exists keep index

19 no no yes exists exists keep index

20 yes yes no exists exists use M

21 no yes no exists exists fail

In all "keep index" cases, the index entry stays as in the original index file. If the entry is not up to date,

git read-tree keeps the copy in the work tree intact when operating under the -u flag.

When this form of git read-tree returns successfully, you can see which of the "local changes" that you

made were carried forward by running git diff-index --cached $M. Note that this does not necessarily

match what git diff-index --cached $H would have produced before such a two tree merge. This is

because of cases 18 and 19 -- if you already had the changes in $M (e.g. maybe you picked it up via

e-mail in a patch form), git diff-index --cached $H would have told you about the change before this

merge, but it would not show in git diff-index --cached $M output after the two-tree merge.

Case 3 is slightly tricky and needs explanation. The result from this rule logically should be to remove

the path if the user staged the removal of the path and then switching to a new branch. That however

will prevent the initial checkout from happening, so the rule is modified to use M (new tree) only when

the content of the index is empty. Otherwise the removal of the path is kept as long as $H and $M are

the same.

3-Way Merge
Each "index" entry has two bits worth of "stage" state. stage 0 is the normal one, and is the only one

you’d see in any kind of normal use.

However, when you do git read-tree with three trees, the "stage" starts out at 1.

This means that you can do

$ git read-tree -m <tree1> <tree2> <tree3>

and you will end up with an index with all of the <tree1> entries in "stage1", all of the <tree2> entries

in "stage2" and all of the <tree3> entries in "stage3". When performing a merge of another branch into

the current branch, we use the common ancestor tree as <tree1>, the current branch head as <tree2>,

and the other branch head as <tree3>.

Furthermore, git read-tree has special-case logic that says: if you see a file that matches in all respects

GIT-READ-TREE(1) Git Manual GIT-READ-TREE(1)

Git 2.42.0 2023-08-21 GIT-READ-TREE(1)

in the following states, it "collapses" back to "stage0":

+o

2 and 3 are the same; take one or the other (it makes no difference - the same work has been done on our

branch in stage 2 and their branch in stage 3)

+o

1 and stage 2 are the same and stage 3 is different; take stage 3 (our branch in stage 2 did not do anything

since the ancestor in stage 1 while their branch in stage 3 worked on it)

+o

1 and stage 3 are the same and stage 2 is different take stage 2 (we did something while they did nothing)

The git write-tree command refuses to write a nonsensical tree, and it will complain about unmerged

entries if it sees a single entry that is not stage 0.

OK, this all sounds like a collection of totally nonsensical rules, but it’s actually exactly what you want

in order to do a fast merge. The different stages represent the "result tree" (stage 0, aka "merged"), the

original tree (stage 1, aka "orig"), and the two trees you are trying to merge (stage 2 and 3

respectively).

The order of stages 1, 2 and 3 (hence the order of three <tree-ish> command-line arguments) are

significant when you start a 3-way merge with an index file that is already populated. Here is an outline

of how the algorithm works:

+o

a file exists in identical format in all three trees, it will automatically collapse to "merged" state by git

read-tree.

+o

file that has any difference what-so-ever in the three trees will stay as separate entries in the index. It’s up

to "porcelain policy" to determine how to remove the non-0 stages, and insert a merged version.

+o

index file saves and restores with all this information, so you can merge things incrementally, but as long

as it has entries in stages 1/2/3 (i.e., "unmerged entries") you can’t write the result. So now the merge

algorithm ends up being really simple:

+o

walk the index in order, and ignore all entries of stage 0, since they’ve already been done.

GIT-READ-TREE(1) Git Manual GIT-READ-TREE(1)

Git 2.42.0 2023-08-21 GIT-READ-TREE(1)

+o

you find a "stage1", but no matching "stage2" or "stage3", you know it’s been removed from both

trees (it only existed in the original tree), and you remove that entry.

+o

you find a matching "stage2" and "stage3" tree, you remove one of them, and turn the other into a

"stage0" entry. Remove any matching "stage1" entry if it exists too. .. all the normal trivial rules ..

You would normally use git merge-index with supplied git merge-one-file to do this last step. The

script updates the files in the working tree as it merges each path and at the end of a successful merge.

When you start a 3-way merge with an index file that is already populated, it is assumed that it

represents the state of the files in your work tree, and you can even have files with changes unrecorded

in the index file. It is further assumed that this state is "derived" from the stage 2 tree. The 3-way merge

refuses to run if it finds an entry in the original index file that does not match stage 2.

This is done to prevent you from losing your work-in-progress changes, and mixing your random

changes in an unrelated merge commit. To illustrate, suppose you start from what has been committed

last to your repository:

$ JC=‘git rev-parse --verify "HEAD^0"‘

$ git checkout-index -f -u -a $JC

You do random edits, without running git update-index. And then you notice that the tip of your

"upstream" tree has advanced since you pulled from him:

$ git fetch git://.... linus

$ LT=‘git rev-parse FETCH_HEAD‘

Your work tree is still based on your HEAD ($JC), but you have some edits since. Three-way merge

makes sure that you have not added or modified index entries since $JC, and if you haven’t, then does

the right thing. So with the following sequence:

$ git read-tree -m -u ‘git merge-base $JC $LT‘ $JC $LT

$ git merge-index git-merge-one-file -a

$ echo "Merge with Linus" | \

git commit-tree ‘git write-tree‘ -p $JC -p $LT

GIT-READ-TREE(1) Git Manual GIT-READ-TREE(1)

Git 2.42.0 2023-08-21 GIT-READ-TREE(1)

what you would commit is a pure merge between $JC and $LT without your

work-in-progress changes, and your work tree would be updated to the result of the

merge.

However, if you have local changes in the working tree that would be overwritten by

this merge, git read-tree will refuse to run to prevent your changes from being lost.

In other words, there is no need to worry about what exists only in the working tree.

When you have local changes in a part of the project that is not involved in the merge,

your changes do not interfere with the merge, and are kept intact. When they do
interfere, the merge does not even start (git read-tree complains loudly and fails without

modifying anything). In such a case, you can simply continue doing what you were in

the middle of doing, and when your working tree is ready (i.e. you have finished your

work-in-progress), attempt the merge again.

SPARSE CHECKOUT
Note: The skip-worktree capabilities in git-update-index(1) and read-tree predated the introduction of

git-sparse-checkout(1). Users are encouraged to use the sparse-checkout command in preference to

these plumbing commands for sparse-checkout/skip-worktree related needs. However, the information

below might be useful to users trying to understand the pattern style used in non-cone mode of the

sparse-checkout command.

"Sparse checkout" allows populating the working directory sparsely. It uses the skip-worktree bit (see

git-update-index(1)) to tell Git whether a file in the working directory is worth looking at.

git read-tree and other merge-based commands (git merge, git checkout...) can help maintaining the

skip-worktree bitmap and working directory update. $GIT_DIR/info/sparse-checkout is used to define

the skip-worktree reference bitmap. When git read-tree needs to update the working directory, it resets

the skip-worktree bit in the index based on this file, which uses the same syntax as .gitignore files. If an

entry matches a pattern in this file, or the entry corresponds to a file present in the working tree, then

skip-worktree will not be set on that entry. Otherwise, skip-worktree will be set.

Then it compares the new skip-worktree value with the previous one. If skip-worktree turns from set to

unset, it will add the corresponding file back. If it turns from unset to set, that file will be removed.

While $GIT_DIR/info/sparse-checkout is usually used to specify what files are in, you can also specify

what files are not in, using negate patterns. For example, to remove the file unwanted:

/*

!unwanted

GIT-READ-TREE(1) Git Manual GIT-READ-TREE(1)

Git 2.42.0 2023-08-21 GIT-READ-TREE(1)

Another tricky thing is fully repopulating the working directory when you no longer want sparse

checkout. You cannot just disable "sparse checkout" because skip-worktree bits are still in the index

and your working directory is still sparsely populated. You should re-populate the working directory

with the $GIT_DIR/info/sparse-checkout file content as follows:

/*

Then you can disable sparse checkout. Sparse checkout support in git read-tree and similar commands

is disabled by default. You need to turn core.sparseCheckout on in order to have sparse checkout

support.

SEE ALSO
git-write-tree(1), git-ls-files(1), gitignore(5), git-sparse-checkout(1)

GIT
Part of the git(1) suite

GIT-READ-TREE(1) Git Manual GIT-READ-TREE(1)

Git 2.42.0 2023-08-21 GIT-READ-TREE(1)

