
NAME
git-shortlog - Summarize ’git log’ output

SYNOPSIS
git shortlog [<options>] [<revision-range>] [[--] <path>...]

git log --pretty=short | git shortlog [<options>]

DESCRIPTION
Summarizes git log output in a format suitable for inclusion in release announcements. Each commit

will be grouped by author and title.

Additionally, "[PATCH]" will be stripped from the commit description.

If no revisions are passed on the command line and either standard input is not a terminal or there is no

current branch, git shortlog will output a summary of the log read from standard input, without

reference to the current repository.

OPTIONS
-n, --numbered

Sort output according to the number of commits per author instead of author alphabetic order.

-s, --summary

Suppress commit description and provide a commit count summary only.

-e, --email

Show the email address of each author.

--format[=<format>]

Instead of the commit subject, use some other information to describe each commit. <format> can

be any string accepted by the --format option of git log, such as * [%h] %s. (See the "PRETTY

FORMATS" section of git-log(1).)

Each pretty-printed commit will be rewrapped before it is shown.

--date=<format>

Show dates formatted according to the given date string. (See the --date option in the "Commit

Formatting" section of git-log(1)). Useful with --group=format:<format>.

--group=<type>

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

Group commits based on <type>. If no --group option is specified, the default is author. <type> is

one of:

+o

commits are grouped by author

+o

commits are grouped by committer (the same as -c)

+o

the <field> is interpreted as a case-insensitive commit message trailer (see git-interpret-trailers(1)).

For example, if your project uses Reviewed-by trailers, you might want to see who has been

reviewing with git shortlog -ns --group=trailer:reviewed-by.

+o

any string accepted by the --format option of git log. (See the "PRETTY FORMATS" section of git-
log(1).)

Note that commits that do not include the trailer will not be counted. Likewise, commits with

multiple trailers (e.g., multiple signoffs) may be counted more than once (but only once per unique

trailer value in that commit).

Shortlog will attempt to parse each trailer value as a name <email> identity. If successful, the

mailmap is applied and the email is omitted unless the --email option is specified. If the value cannot

be parsed as an identity, it will be taken literally and completely.

If --group is specified multiple times, commits are counted under each value (but again, only once

per unique value in that commit). For example, git shortlog --group=author
--group=trailer:co-authored-by counts both authors and co-authors.

-c, --committer

This is an alias for --group=committer.

-w[<width>[,<indent1>[,<indent2>]]]

Linewrap the output by wrapping each line at width. The first line of each entry is indented by

indent1 spaces, and the second and subsequent lines are indented by indent2 spaces. width,

indent1, and indent2 default to 76, 6 and 9 respectively.

If width is 0 (zero) then indent the lines of the output without wrapping them.

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

<revision-range>

Show only commits in the specified revision range. When no <revision-range> is specified, it

defaults to HEAD (i.e. the whole history leading to the current commit). origin..HEAD specifies

all the commits reachable from the current commit (i.e. HEAD), but not from origin. For a

complete list of ways to spell <revision-range>, see the "Specifying Ranges" section of

gitrevisions(7).

[--] <path>...

Consider only commits that are enough to explain how the files that match the specified paths

came to be.

Paths may need to be prefixed with -- to separate them from options or the revision range, when

confusion arises.

Commit Limiting
Besides specifying a range of commits that should be listed using the special notations explained in the

description, additional commit limiting may be applied.

Using more options generally further limits the output (e.g. --since=<date1> limits to commits newer

than <date1>, and using it with --grep=<pattern> further limits to commits whose log message has a

line that matches <pattern>), unless otherwise noted.

Note that these are applied before commit ordering and formatting options, such as --reverse.

-<number>, -n <number>, --max-count=<number>

Limit the number of commits to output.

--skip=<number>

Skip number commits before starting to show the commit output.

--since=<date>, --after=<date>

Show commits more recent than a specific date.

--since-as-filter=<date>

Show all commits more recent than a specific date. This visits all commits in the range, rather than

stopping at the first commit which is older than a specific date.

--until=<date>, --before=<date>

Show commits older than a specific date.

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

--author=<pattern>, --committer=<pattern>

Limit the commits output to ones with author/committer header lines that match the specified

pattern (regular expression). With more than one --author=<pattern>, commits whose author

matches any of the given patterns are chosen (similarly for multiple --committer=<pattern>).

--grep-reflog=<pattern>

Limit the commits output to ones with reflog entries that match the specified pattern (regular

expression). With more than one --grep-reflog, commits whose reflog message matches any of the

given patterns are chosen. It is an error to use this option unless --walk-reflogs is in use.

--grep=<pattern>

Limit the commits output to ones with log message that matches the specified pattern (regular

expression). With more than one --grep=<pattern>, commits whose message matches any of the

given patterns are chosen (but see --all-match).

When --notes is in effect, the message from the notes is matched as if it were part of the log

message.

--all-match

Limit the commits output to ones that match all given --grep, instead of ones that match at least

one.

--invert-grep

Limit the commits output to ones with log message that do not match the pattern specified with

--grep=<pattern>.

-i, --regexp-ignore-case

Match the regular expression limiting patterns without regard to letter case.

--basic-regexp

Consider the limiting patterns to be basic regular expressions; this is the default.

-E, --extended-regexp

Consider the limiting patterns to be extended regular expressions instead of the default basic

regular expressions.

-F, --fixed-strings

Consider the limiting patterns to be fixed strings (don’t interpret pattern as a regular expression).

-P, --perl-regexp

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

Consider the limiting patterns to be Perl-compatible regular expressions.

Support for these types of regular expressions is an optional compile-time dependency. If Git

wasn’t compiled with support for them providing this option will cause it to die.

--remove-empty

Stop when a given path disappears from the tree.

--merges

Print only merge commits. This is exactly the same as --min-parents=2.

--no-merges

Do not print commits with more than one parent. This is exactly the same as --max-parents=1.

--min-parents=<number>, --max-parents=<number>, --no-min-parents, --no-max-parents

Show only commits which have at least (or at most) that many parent commits. In particular,

--max-parents=1 is the same as --no-merges, --min-parents=2 is the same as --merges.

--max-parents=0 gives all root commits and --min-parents=3 all octopus merges.

--no-min-parents and --no-max-parents reset these limits (to no limit) again. Equivalent forms are

--min-parents=0 (any commit has 0 or more parents) and --max-parents=-1 (negative numbers

denote no upper limit).

--first-parent

When finding commits to include, follow only the first parent commit upon seeing a merge

commit. This option can give a better overview when viewing the evolution of a particular topic

branch, because merges into a topic branch tend to be only about adjusting to updated upstream

from time to time, and this option allows you to ignore the individual commits brought in to your

history by such a merge.

--exclude-first-parent-only

When finding commits to exclude (with a ^), follow only the first parent commit upon seeing a

merge commit. This can be used to find the set of changes in a topic branch from the point where

it diverged from the remote branch, given that arbitrary merges can be valid topic branch changes.

--not

Reverses the meaning of the ^ prefix (or lack thereof) for all following revision specifiers, up to

the next --not.

--all

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

Pretend as if all the refs in refs/, along with HEAD, are listed on the command line as <commit>.

--branches[=<pattern>]

Pretend as if all the refs in refs/heads are listed on the command line as <commit>. If <pattern> is

given, limit branches to ones matching given shell glob. If pattern lacks ?, *, or [, /* at the end is

implied.

--tags[=<pattern>]

Pretend as if all the refs in refs/tags are listed on the command line as <commit>. If <pattern> is

given, limit tags to ones matching given shell glob. If pattern lacks ?, *, or [, /* at the end is

implied.

--remotes[=<pattern>]

Pretend as if all the refs in refs/remotes are listed on the command line as <commit>. If <pattern>

is given, limit remote-tracking branches to ones matching given shell glob. If pattern lacks ?, *, or

[, /* at the end is implied.

--glob=<glob-pattern>

Pretend as if all the refs matching shell glob <glob-pattern> are listed on the command line as

<commit>. Leading refs/, is automatically prepended if missing. If pattern lacks ?, *, or [, /* at the

end is implied.

--exclude=<glob-pattern>

Do not include refs matching <glob-pattern> that the next --all, --branches, --tags, --remotes, or

--glob would otherwise consider. Repetitions of this option accumulate exclusion patterns up to

the next --all, --branches, --tags, --remotes, or --glob option (other options or arguments do not

clear accumulated patterns).

The patterns given should not begin with refs/heads, refs/tags, or refs/remotes when applied to

--branches, --tags, or --remotes, respectively, and they must begin with refs/ when applied to

--glob or --all. If a trailing /* is intended, it must be given explicitly.

--exclude-hidden=[fetch|receive|uploadpack]

Do not include refs that would be hidden by git-fetch, git-receive-pack or git-upload-pack by

consulting the appropriate fetch.hideRefs, receive.hideRefs or uploadpack.hideRefs configuration

along with transfer.hideRefs (see git-config(1)). This option affects the next pseudo-ref option

--all or --glob and is cleared after processing them.

--reflog

Pretend as if all objects mentioned by reflogs are listed on the command line as <commit>.

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

--alternate-refs

Pretend as if all objects mentioned as ref tips of alternate repositories were listed on the command

line. An alternate repository is any repository whose object directory is specified in

objects/info/alternates. The set of included objects may be modified by

core.alternateRefsCommand, etc. See git-config(1).

--single-worktree

By default, all working trees will be examined by the following options when there are more than

one (see git-worktree(1)): --all, --reflog and --indexed-objects. This option forces them to examine

the current working tree only.

--ignore-missing

Upon seeing an invalid object name in the input, pretend as if the bad input was not given.

--bisect

Pretend as if the bad bisection ref refs/bisect/bad was listed and as if it was followed by --not and

the good bisection refs refs/bisect/good-* on the command line.

--stdin

In addition to getting arguments from the command line, read them from standard input as well.

This accepts commits and pseudo-options like --all and --glob=. When a -- separator is seen, the

following input is treated as paths and used to limit the result.

--cherry-mark

Like --cherry-pick (see below) but mark equivalent commits with = rather than omitting them, and

inequivalent ones with +.

--cherry-pick

Omit any commit that introduces the same change as another commit on the "other side" when the

set of commits are limited with symmetric difference.

For example, if you have two branches, A and B, a usual way to list all commits on only one side

of them is with --left-right (see the example below in the description of the --left-right option).

However, it shows the commits that were cherry-picked from the other branch (for example, "3rd

on b" may be cherry-picked from branch A). With this option, such pairs of commits are excluded

from the output.

--left-only, --right-only

List only commits on the respective side of a symmetric difference, i.e. only those which would be

marked < resp. > by --left-right.

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

For example, --cherry-pick --right-only A...B omits those commits from B which are in A or are

patch-equivalent to a commit in A. In other words, this lists the + commits from git cherry A B.

More precisely, --cherry-pick --right-only --no-merges gives the exact list.

--cherry

A synonym for --right-only --cherry-mark --no-merges; useful to limit the output to the commits

on our side and mark those that have been applied to the other side of a forked history with git log
--cherry upstream...mybranch, similar to git cherry upstream mybranch.

-g, --walk-reflogs

Instead of walking the commit ancestry chain, walk reflog entries from the most recent one to

older ones. When this option is used you cannot specify commits to exclude (that is, ^commit,

commit1..commit2, and commit1...commit2 notations cannot be used).

With --pretty format other than oneline and reference (for obvious reasons), this causes the output

to have two extra lines of information taken from the reflog. The reflog designator in the output

may be shown as ref@{Nth} (where Nth is the reverse-chronological index in the reflog) or as

ref@{timestamp} (with the timestamp for that entry), depending on a few rules:

1.

the starting point is specified as ref@{Nth}, show the index format.

2.

the starting point was specified as ref@{now}, show the timestamp format.

3.

neither was used, but --date was given on the command line, show the timestamp in the format

requested by --date.

4.

show the index format.

Under --pretty=oneline, the commit message is prefixed with this information on the same line.

This option cannot be combined with --reverse. See also git-reflog(1).

Under --pretty=reference, this information will not be shown at all.

--merge

After a failed merge, show refs that touch files having a conflict and don’t exist on all heads to

merge.

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

--boundary

Output excluded boundary commits. Boundary commits are prefixed with -.

History Simplification
Sometimes you are only interested in parts of the history, for example the commits modifying a

particular <path>. But there are two parts of History Simplification, one part is selecting the commits

and the other is how to do it, as there are various strategies to simplify the history.

The following options select the commits to be shown:

<paths>

Commits modifying the given <paths> are selected.

--simplify-by-decoration

Commits that are referred by some branch or tag are selected.

Note that extra commits can be shown to give a meaningful history.

The following options affect the way the simplification is performed:

Default mode

Simplifies the history to the simplest history explaining the final state of the tree. Simplest

because it prunes some side branches if the end result is the same (i.e. merging branches with the

same content)

--show-pulls

Include all commits from the default mode, but also any merge commits that are not TREESAME

to the first parent but are TREESAME to a later parent. This mode is helpful for showing the

merge commits that "first introduced" a change to a branch.

--full-history

Same as the default mode, but does not prune some history.

--dense

Only the selected commits are shown, plus some to have a meaningful history.

--sparse

All commits in the simplified history are shown.

--simplify-merges

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

Additional option to --full-history to remove some needless merges from the resulting history, as

there are no selected commits contributing to this merge.

--ancestry-path[=<commit>]

When given a range of commits to display (e.g. commit1..commit2 or commit2 ^commit1), only

display commits in that range that are ancestors of <commit>, descendants of <commit>, or

<commit> itself. If no commit is specified, use commit1 (the excluded part of the range) as

<commit>. Can be passed multiple times; if so, a commit is included if it is any of the commits

given or if it is an ancestor or descendant of one of them.

A more detailed explanation follows.

Suppose you specified foo as the <paths>. We shall call commits that modify foo !TREESAME, and

the rest TREESAME. (In a diff filtered for foo, they look different and equal, respectively.)

In the following, we will always refer to the same example history to illustrate the differences between

simplification settings. We assume that you are filtering for a file foo in this commit graph:

.-A---M---N---O---P---Q

/ / / / / /

I B C D E Y

\ / / / / /

‘-------------’ X

The horizontal line of history A---Q is taken to be the first parent of each merge. The commits are:

+o

is the initial commit, in which foo exists with contents "asdf", and a file quux exists with contents "quux".

Initial commits are compared to an empty tree, so I is !TREESAME.

+o

A, foo contains just "foo".

+o

contains the same change as A. Its merge M is trivial and hence TREESAME to all parents.

+o

does not change foo, but its merge N changes it to "foobar", so it is not TREESAME to any parent.

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

+o

sets foo to "baz". Its merge O combines the strings from N and D to "foobarbaz"; i.e., it is not

TREESAME to any parent.

+o

changes quux to "xyzzy", and its merge P combines the strings to "quux xyzzy". P is TREESAME to O,

but not to E.

+o

is an independent root commit that added a new file side, and Y modified it. Y is TREESAME to X. Its

merge Q added side to P, and Q is TREESAME to P, but not to Y.

rev-list walks backwards through history, including or excluding commits based on whether

--full-history and/or parent rewriting (via --parents or --children) are used. The following settings are

available.

Default mode

Commits are included if they are not TREESAME to any parent (though this can be changed, see

--sparse below). If the commit was a merge, and it was TREESAME to one parent, follow only

that parent. (Even if there are several TREESAME parents, follow only one of them.) Otherwise,

follow all parents.

This results in:

.-A---N---O

/ / /

I---------D

Note how the rule to only follow the TREESAME parent, if one is available, removed B from

consideration entirely. C was considered via N, but is TREESAME. Root commits are compared

to an empty tree, so I is !TREESAME.

Parent/child relations are only visible with --parents, but that does not affect the commits selected

in default mode, so we have shown the parent lines.

--full-history without parent rewriting

This mode differs from the default in one point: always follow all parents of a merge, even if it is

TREESAME to one of them. Even if more than one side of the merge has commits that are

included, this does not imply that the merge itself is! In the example, we get

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

I A B N D O P Q

M was excluded because it is TREESAME to both parents. E, C and B were all walked, but only

B was !TREESAME, so the others do not appear.

Note that without parent rewriting, it is not really possible to talk about the parent/child

relationships between the commits, so we show them disconnected.

--full-history with parent rewriting

Ordinary commits are only included if they are !TREESAME (though this can be changed, see

--sparse below).

Merges are always included. However, their parent list is rewritten: Along each parent, prune

away commits that are not included themselves. This results in

.-A---M---N---O---P---Q

/ / / / /

I B / D /

\ / / / /

‘-------------’

Compare to --full-history without rewriting above. Note that E was pruned away because it is

TREESAME, but the parent list of P was rewritten to contain E’s parent I. The same happened for

C and N, and X, Y and Q.

In addition to the above settings, you can change whether TREESAME affects inclusion:

--dense

Commits that are walked are included if they are not TREESAME to any parent.

--sparse

All commits that are walked are included.

Note that without --full-history, this still simplifies merges: if one of the parents is TREESAME,

we follow only that one, so the other sides of the merge are never walked.

--simplify-merges

First, build a history graph in the same way that --full-history with parent rewriting does (see

above).

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

Then simplify each commit C to its replacement C’ in the final history according to the following

rules:

+o

C’ to C.

+o

each parent P of C’ with its simplification P’. In the process, drop parents that are ancestors of other

parents or that are root commits TREESAME to an empty tree, and remove duplicates, but take care

to never drop all parents that we are TREESAME to.

+o

after this parent rewriting, C’ is a root or merge commit (has zero or >1 parents), a boundary commit,

or !TREESAME, it remains. Otherwise, it is replaced with its only parent.

The effect of this is best shown by way of comparing to --full-history with parent rewriting. The

example turns into:

.-A---M---N---O

/ / /

I B D

\ / /

‘---------’

Note the major differences in N, P, and Q over --full-history:

+o

parent list had I removed, because it is an ancestor of the other parent M. Still, N remained because it

is !TREESAME.

+o

parent list similarly had I removed. P was then removed completely, because it had one parent and is

TREESAME.

+o

parent list had Y simplified to X. X was then removed, because it was a TREESAME root. Q was

then removed completely, because it had one parent and is TREESAME.

There is another simplification mode available:

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

--ancestry-path[=<commit>]

Limit the displayed commits to those which are an ancestor of <commit>, or which are a

descendant of <commit>, or are <commit> itself.

As an example use case, consider the following commit history:

D---E-------F

/ \ \

B---C---G---H---I---J

/ \

A-------K---------------L--M

A regular D..M computes the set of commits that are ancestors of M, but excludes the ones that

are ancestors of D. This is useful to see what happened to the history leading to M since D, in the

sense that "what does M have that did not exist in D". The result in this example would be all the

commits, except A and B (and D itself, of course).

When we want to find out what commits in M are contaminated with the bug introduced by D and

need fixing, however, we might want to view only the subset of D..M that are actually

descendants of D, i.e. excluding C and K. This is exactly what the --ancestry-path option does.

Applied to the D..M range, it results in:

E-------F

\ \

G---H---I---J

\

L--M

We can also use --ancestry-path=D instead of --ancestry-path which means the same thing when

applied to the D..M range but is just more explicit.

If we instead are interested in a given topic within this range, and all commits affected by that

topic, we may only want to view the subset of D..M which contain that topic in their ancestry

path. So, using --ancestry-path=H D..M for example would result in:

E

\

G---H---I---J

\

L--M

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

Whereas --ancestry-path=K D..M would result in

K---------------L--M

Before discussing another option, --show-pulls, we need to create a new example history.

A common problem users face when looking at simplified history is that a commit they know changed

a file somehow does not appear in the file’s simplified history. Let’s demonstrate a new example and

show how options such as --full-history and --simplify-merges works in that case:

.-A---M-----C--N---O---P

/ / \ \ \/ / /

I B \ R-’‘-Z’ /

\ / \/ /

\ / /\ /

‘---X--’ ‘---Y--’

For this example, suppose I created file.txt which was modified by A, B, and X in different ways. The

single-parent commits C, Z, and Y do not change file.txt. The merge commit M was created by

resolving the merge conflict to include both changes from A and B and hence is not TREESAME to

either. The merge commit R, however, was created by ignoring the contents of file.txt at M and taking

only the contents of file.txt at X. Hence, R is TREESAME to X but not M. Finally, the natural merge

resolution to create N is to take the contents of file.txt at R, so N is TREESAME to R but not C. The

merge commits O and P are TREESAME to their first parents, but not to their second parents, Z and Y
respectively.

When using the default mode, N and R both have a TREESAME parent, so those edges are walked and

the others are ignored. The resulting history graph is:

I---X

When using --full-history, Git walks every edge. This will discover the commits A and B and the

merge M, but also will reveal the merge commits O and P. With parent rewriting, the resulting graph is:

.-A---M--------N---O---P

/ / \ \ \/ / /

I B \ R-’‘--’ /

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

\ / \/ /

\ / /\ /

‘---X--’ ‘------’

Here, the merge commits O and P contribute extra noise, as they did not actually contribute a change to

file.txt. They only merged a topic that was based on an older version of file.txt. This is a common issue

in repositories using a workflow where many contributors work in parallel and merge their topic

branches along a single trunk: many unrelated merges appear in the --full-history results.

When using the --simplify-merges option, the commits O and P disappear from the results. This is

because the rewritten second parents of O and P are reachable from their first parents. Those edges are

removed and then the commits look like single-parent commits that are TREESAME to their parent.

This also happens to the commit N, resulting in a history view as follows:

.-A---M--.

/ / \

I B R

\ / /

\ / /

‘---X--’

In this view, we see all of the important single-parent changes from A, B, and X. We also see the

carefully-resolved merge M and the not-so-carefully-resolved merge R. This is usually enough

information to determine why the commits A and B "disappeared" from history in the default view.

However, there are a few issues with this approach.

The first issue is performance. Unlike any previous option, the --simplify-merges option requires

walking the entire commit history before returning a single result. This can make the option difficult to

use for very large repositories.

The second issue is one of auditing. When many contributors are working on the same repository, it is

important which merge commits introduced a change into an important branch. The problematic merge

R above is not likely to be the merge commit that was used to merge into an important branch. Instead,

the merge N was used to merge R and X into the important branch. This commit may have information

about why the change X came to override the changes from A and B in its commit message.

--show-pulls

In addition to the commits shown in the default history, show each merge commit that is not

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

TREESAME to its first parent but is TREESAME to a later parent.

When a merge commit is included by --show-pulls, the merge is treated as if it "pulled" the change

from another branch. When using --show-pulls on this example (and no other options) the

resulting graph is:

I---X---R---N

Here, the merge commits R and N are included because they pulled the commits X and R into the

base branch, respectively. These merges are the reason the commits A and B do not appear in the

default history.

When --show-pulls is paired with --simplify-merges, the graph includes all of the necessary

information:

.-A---M--. N

/ / \ /

I B R

\ / /

\ / /

‘---X--’

Notice that since M is reachable from R, the edge from N to M was simplified away. However, N
still appears in the history as an important commit because it "pulled" the change R into the main

branch.

The --simplify-by-decoration option allows you to view only the big picture of the topology of the

history, by omitting commits that are not referenced by tags. Commits are marked as !TREESAME (in

other words, kept after history simplification rules described above) if (1) they are referenced by tags,

or (2) they change the contents of the paths given on the command line. All other commits are marked

as TREESAME (subject to be simplified away).

MAPPING AUTHORS
See gitmailmap(5).

Note that if git shortlog is run outside of a repository (to process log contents on standard input), it will

look for a .mailmap file in the current directory.

GIT
Part of the git(1) suite

GIT-SHORTLOG(1) Git Manual GIT-SHORTLOG(1)

Git 2.42.0 2023-08-21 GIT-SHORTLOG(1)

