
NAME
git-show - Show various types of objects

SYNOPSIS
git show [<options>] [<object>...]

DESCRIPTION
Shows one or more objects (blobs, trees, tags and commits).

For commits it shows the log message and textual diff. It also presents the merge commit in a special

format as produced by git diff-tree --cc.

For tags, it shows the tag message and the referenced objects.

For trees, it shows the names (equivalent to git ls-tree with --name-only).

For plain blobs, it shows the plain contents.

The command takes options applicable to the git diff-tree command to control how the changes the

commit introduces are shown.

This manual page describes only the most frequently used options.

OPTIONS
<object>...

The names of objects to show (defaults to HEAD). For a more complete list of ways to spell

object names, see "SPECIFYING REVISIONS" section in gitrevisions(7).

--pretty[=<format>], --format=<format>

Pretty-print the contents of the commit logs in a given format, where <format> can be one of

oneline, short, medium, full, fuller, reference, email, raw, format:<string> and tformat:<string>.

When <format> is none of the above, and has %placeholder in it, it acts as if

--pretty=tformat:<format> were given.

See the "PRETTY FORMATS" section for some additional details for each format. When

=<format> part is omitted, it defaults to medium.

Note: you can specify the default pretty format in the repository configuration (see git-config(1)).

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

--abbrev-commit

Instead of showing the full 40-byte hexadecimal commit object name, show a prefix that names

the object uniquely. "--abbrev=<n>" (which also modifies diff output, if it is displayed) option can

be used to specify the minimum length of the prefix.

This should make "--pretty=oneline" a whole lot more readable for people using 80-column

terminals.

--no-abbrev-commit

Show the full 40-byte hexadecimal commit object name. This negates --abbrev-commit, either

explicit or implied by other options such as "--oneline". It also overrides the log.abbrevCommit
variable.

--oneline

This is a shorthand for "--pretty=oneline --abbrev-commit" used together.

--encoding=<encoding>

Commit objects record the character encoding used for the log message in their encoding header;

this option can be used to tell the command to re-code the commit log message in the encoding

preferred by the user. For non plumbing commands this defaults to UTF-8. Note that if an object

claims to be encoded in X and we are outputting in X, we will output the object verbatim; this

means that invalid sequences in the original commit may be copied to the output. Likewise, if

iconv(3) fails to convert the commit, we will quietly output the original object verbatim.

--expand-tabs=<n>, --expand-tabs, --no-expand-tabs

Perform a tab expansion (replace each tab with enough spaces to fill to the next display column

that is multiple of <n>) in the log message before showing it in the output. --expand-tabs is a

short-hand for --expand-tabs=8, and --no-expand-tabs is a short-hand for --expand-tabs=0, which

disables tab expansion.

By default, tabs are expanded in pretty formats that indent the log message by 4 spaces (i.e.

medium, which is the default, full, and fuller).

--notes[=<ref>]

Show the notes (see git-notes(1)) that annotate the commit, when showing the commit log

message. This is the default for git log, git show and git whatchanged commands when there is no

--pretty, --format, or --oneline option given on the command line.

By default, the notes shown are from the notes refs listed in the core.notesRef and

notes.displayRef variables (or corresponding environment overrides). See git-config(1) for more

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

details.

With an optional <ref> argument, use the ref to find the notes to display. The ref can specify the

full refname when it begins with refs/notes/; when it begins with notes/, refs/ and otherwise

refs/notes/ is prefixed to form a full name of the ref.

Multiple --notes options can be combined to control which notes are being displayed. Examples:

"--notes=foo" will show only notes from "refs/notes/foo"; "--notes=foo --notes" will show both

notes from "refs/notes/foo" and from the default notes ref(s).

--no-notes

Do not show notes. This negates the above --notes option, by resetting the list of notes refs from

which notes are shown. Options are parsed in the order given on the command line, so e.g.

"--notes --notes=foo --no-notes --notes=bar" will only show notes from "refs/notes/bar".

--show-notes[=<ref>], --[no-]standard-notes

These options are deprecated. Use the above --notes/--no-notes options instead.

--show-signature

Check the validity of a signed commit object by passing the signature to gpg --verify and show the

output.

PRETTY FORMATS
If the commit is a merge, and if the pretty-format is not oneline, email or raw, an additional line is

inserted before the Author: line. This line begins with "Merge: " and the hashes of ancestral commits

are printed, separated by spaces. Note that the listed commits may not necessarily be the list of the

direct parent commits if you have limited your view of history: for example, if you are only interested

in changes related to a certain directory or file.

There are several built-in formats, and you can define additional formats by setting a pretty.<name>

config option to either another format name, or a format: string, as described below (see git-config(1)).

Here are the details of the built-in formats:

+o

<hash> <title-line>

This is designed to be as compact as possible.

+o

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

commit <hash>

Author: <author>

<title-line>

+o

commit <hash>

Author: <author>

Date: <author-date>

<title-line>

<full-commit-message>

+o

commit <hash>

Author: <author>

Commit: <committer>

<title-line>

<full-commit-message>

+o

commit <hash>

Author: <author>

AuthorDate: <author-date>

Commit: <committer>

CommitDate: <committer-date>

<title-line>

<full-commit-message>

+o

<abbrev-hash> (<title-line>, <short-author-date>)

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

This format is used to refer to another commit in a commit message and is the same as

--pretty=’format:%C(auto)%h (%s, %ad)’. By default, the date is formatted with --date=short
unless another --date option is explicitly specified. As with any format: with format placeholders,

its output is not affected by other options like --decorate and --walk-reflogs.

+o

From <hash> <date>

From: <author>

Date: <author-date>

Subject: [PATCH] <title-line>

<full-commit-message>

+o

Like email, but lines in the commit message starting with "From " (preceded by zero or more ">") are

quoted with ">" so they aren’t confused as starting a new commit.

+o

The raw format shows the entire commit exactly as stored in the commit object. Notably, the hashes are

displayed in full, regardless of whether --abbrev or --no-abbrev are used, and parents information show

the true parent commits, without taking grafts or history simplification into account. Note that this format

affects the way commits are displayed, but not the way the diff is shown e.g. with git log --raw. To get full

object names in a raw diff format, use --no-abbrev.

+o

The format:<format-string> format allows you to specify which information you want to show. It works a

little bit like printf format, with the notable exception that you get a newline with %n instead of \n.

E.g, format:"The author of %h was %an, %ar%nThe title was >>%s<<%n" would show something like

this:

The author of fe6e0ee was Junio C Hamano, 23 hours ago

The title was >>t4119: test autocomputing -p<n> for traditional diff input.<<

The placeholders are:

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

+o

that expand to a single literal character:

%n

newline

%%

a raw %

%x00

print a byte from a hex code

+o

that affect formatting of later placeholders:

%Cred

switch color to red

%Cgreen

switch color to green

%Cblue

switch color to blue

%Creset

reset color

%C(...)

color specification, as described under Values in the "CONFIGURATION FILE"

section of git-config(1). By default, colors are shown only when enabled for log output

(by color.diff, color.ui, or --color, and respecting the auto settings of the former if we

are going to a terminal). %C(auto,...) is accepted as a historical synonym for the default

(e.g., %C(auto,red)). Specifying %C(always,...) will show the colors even when color is

not otherwise enabled (though consider just using --color=always to enable color for the

whole output, including this format and anything else git might color). auto alone (i.e.

%C(auto)) will turn on auto coloring on the next placeholders until the color is switched

again.

%m

left (<), right (>) or boundary (-) mark

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

%w([<w>[,<i1>[,<i2>]]])

switch line wrapping, like the -w option of git-shortlog(1).

%<(<N> [,trunc|ltrunc|mtrunc])

make the next placeholder take at least N column widths, padding spaces on the right if

necessary. Optionally truncate (with ellipsis ..) at the left (ltrunc) ..ft, the middle

(mtrunc) mi..le, or the end (trunc) rig.., if the output is longer than N columns. Note 1:

that truncating only works correctly with N >= 2. Note 2: spaces around the N and M

(see below) values are optional. Note 3: Emojis and other wide characters will take two

display columns, which may over-run column boundaries. Note 4: decomposed

character combining marks may be misplaced at padding boundaries.

%<|(<M>)

make the next placeholder take at least until Mth display column, padding spaces on the

right if necessary. Use negative M values for column positions measured from the right

hand edge of the terminal window.

%>(<N>), %>|(<M>)

similar to %<(<N>), %<|(<M>) respectively, but padding spaces on the left

%>>(<N>), %>>|(<M>)

similar to %>(<N>), %>|(<M>) respectively, except that if the next placeholder takes

more spaces than given and there are spaces on its left, use those spaces

%><(<N>), %><|(<M>)

similar to %<(<N>), %<|(<M>) respectively, but padding both sides (i.e. the text is

centered)

+o

that expand to information extracted from the commit:

%H

commit hash

%h

abbreviated commit hash

%T

tree hash

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

%t

abbreviated tree hash

%P

parent hashes

%p

abbreviated parent hashes

%an

author name

%aN

author name (respecting .mailmap, see git-shortlog(1) or git-blame(1))

%ae

author email

%aE

author email (respecting .mailmap, see git-shortlog(1) or git-blame(1))

%al

author email local-part (the part before the @ sign)

%aL

author local-part (see %al) respecting .mailmap, see git-shortlog(1) or git-blame(1))

%ad

author date (format respects --date= option)

%aD

author date, RFC2822 style

%ar

author date, relative

%at

author date, UNIX timestamp

%ai

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

author date, ISO 8601-like format

%aI

author date, strict ISO 8601 format

%as

author date, short format (YYYY-MM-DD)

%ah

author date, human style (like the --date=human option of git-rev-list(1))

%cn

committer name

%cN

committer name (respecting .mailmap, see git-shortlog(1) or git-blame(1))

%ce

committer email

%cE

committer email (respecting .mailmap, see git-shortlog(1) or git-blame(1))

%cl

committer email local-part (the part before the @ sign)

%cL

committer local-part (see %cl) respecting .mailmap, see git-shortlog(1) or git-blame(1))

%cd

committer date (format respects --date= option)

%cD

committer date, RFC2822 style

%cr

committer date, relative

%ct

committer date, UNIX timestamp

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

%ci

committer date, ISO 8601-like format

%cI

committer date, strict ISO 8601 format

%cs

committer date, short format (YYYY-MM-DD)

%ch

committer date, human style (like the --date=human option of git-rev-list(1))

%d

ref names, like the --decorate option of git-log(1)

%D

ref names without the " (", ")" wrapping.

%(describe[:options])

human-readable name, like git-describe(1); empty string for undescribable commits. The

describe string may be followed by a colon and zero or more comma-separated options.

Descriptions can be inconsistent when tags are added or removed at the same time.

+o

Instead of only considering annotated tags, consider lightweight tags as well.

+o

Instead of using the default number of hexadecimal digits (which will vary according to the

number of objects in the repository with a default of 7) of the abbreviated object name, use

<number> digits, or as many digits as needed to form a unique object name.

+o

Only consider tags matching the given glob(7) pattern, excluding the "refs/tags/" prefix.

+o

Do not consider tags matching the given glob(7) pattern, excluding the "refs/tags/" prefix.

%S

ref name given on the command line by which the commit was reached (like git log
--source), only works with git log

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

%e

encoding

%s

subject

%f

sanitized subject line, suitable for a filename

%b

body

%B

raw body (unwrapped subject and body)

%N

commit notes

%GG

raw verification message from GPG for a signed commit

%G?

show "G" for a good (valid) signature, "B" for a bad signature, "U" for a good signature

with unknown validity, "X" for a good signature that has expired, "Y" for a good

signature made by an expired key, "R" for a good signature made by a revoked key, "E"

if the signature cannot be checked (e.g. missing key) and "N" for no signature

%GS

show the name of the signer for a signed commit

%GK

show the key used to sign a signed commit

%GF

show the fingerprint of the key used to sign a signed commit

%GP

show the fingerprint of the primary key whose subkey was used to sign a signed commit

%GT

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

show the trust level for the key used to sign a signed commit

%gD

reflog selector, e.g., refs/stash@{1} or refs/stash@{2 minutes ago}; the format follows

the rules described for the -g option. The portion before the @ is the refname as given

on the command line (so git log -g refs/heads/master would yield

refs/heads/master@{0}).

%gd

shortened reflog selector; same as %gD, but the refname portion is shortened for human

readability (so refs/heads/master becomes just master).

%gn

reflog identity name

%gN

reflog identity name (respecting .mailmap, see git-shortlog(1) or git-blame(1))

%ge

reflog identity email

%gE

reflog identity email (respecting .mailmap, see git-shortlog(1) or git-blame(1))

%gs

reflog subject

%(trailers[:options])

display the trailers of the body as interpreted by git-interpret-trailers(1). The trailers
string may be followed by a colon and zero or more comma-separated options. If any

option is provided multiple times the last occurrence wins.

+o

only show trailers with specified <key>. Matching is done case-insensitively and trailing

colon is optional. If option is given multiple times trailer lines matching any of the keys are

shown. This option automatically enables the only option so that non-trailer lines in the

trailer block are hidden. If that is not desired it can be disabled with only=false. E.g.,

%(trailers:key=Reviewed-by) shows trailer lines with key Reviewed-by.

+o

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

select whether non-trailer lines from the trailer block should be included.

+o

specify a separator inserted between trailer lines. When this option is not given each trailer

line is terminated with a line feed character. The string <sep> may contain the literal

formatting codes described above. To use comma as separator one must use %x2C as it

would otherwise be parsed as next option. E.g., %(trailers:key=Ticket,separator=%x2C)
shows all trailer lines whose key is "Ticket" separated by a comma and a space.

+o

make it behave as if interpret-trailer’s --unfold option was given. E.g.,

%(trailers:only,unfold=true) unfolds and shows all trailer lines.

+o

only show the key part of the trailer.

+o

only show the value part of the trailer.

+o

specify a separator inserted between trailer lines. When this option is not given each trailer

key-value pair is separated by ": ". Otherwise it shares the same semantics as

separator=<sep> above.

Note

Some placeholders may depend on other options given to the revision traversal engine. For

example, the %g* reflog options will insert an empty string unless we are traversing reflog entries

(e.g., by git log -g). The %d and %D placeholders will use the "short" decoration format if

--decorate was not already provided on the command line.

The boolean options accept an optional value [=<bool-value>]. The values true, false, on, off etc. are

all accepted. See the "boolean" sub-section in "EXAMPLES" in git-config(1). If a boolean option is

given with no value, it’s enabled.

If you add a + (plus sign) after % of a placeholder, a line-feed is inserted immediately before the

expansion if and only if the placeholder expands to a non-empty string.

If you add a - (minus sign) after % of a placeholder, all consecutive line-feeds immediately preceding

the expansion are deleted if and only if the placeholder expands to an empty string.

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

If you add a ‘ ‘ (space) after % of a placeholder, a space is

inserted immediately before the expansion if and only if the

placeholder expands to a non-empty string.

+o

The tformat: format works exactly like format:, except that it provides "terminator" semantics instead of

"separator" semantics. In other words, each commit has the message terminator character (usually a

newline) appended, rather than a separator placed between entries. This means that the final entry of a

single-line format will be properly terminated with a new line, just as the "oneline" format does. For

example:

$ git log -2 --pretty=format:%h 4da45bef \

| perl -pe ’$_ .= " -- NO NEWLINE\n" unless /\n/’

4da45be

7134973 -- NO NEWLINE

$ git log -2 --pretty=tformat:%h 4da45bef \

| perl -pe ’$_ .= " -- NO NEWLINE\n" unless /\n/’

4da45be

7134973

In addition, any unrecognized string that has a % in it is interpreted as if it has tformat: in front of

it. For example, these two are equivalent:

$ git log -2 --pretty=tformat:%h 4da45bef

$ git log -2 --pretty=%h 4da45bef

DIFF FORMATTING
The options below can be used to change the way git show generates diff output.

-p, -u, --patch

Generate patch (see section titled "Generating patch text with -p").

-s, --no-patch

Suppress all output from the diff machinery. Useful for commands like git show that show the

patch by default to squelch their output, or to cancel the effect of options like --patch, --stat earlier

on the command line in an alias.

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

--diff-merges=(off|none|on|first-parent|1|separate|m|combined|c|dense-combined|cc|remerge|r),

--no-diff-merges

Specify diff format to be used for merge commits. Default is dense-combined unless --first-parent
is in use, in which case first-parent is the default.

--diff-merges=(off|none), --no-diff-merges

Disable output of diffs for merge commits. Useful to override implied value.

--diff-merges=on, --diff-merges=m, -m

This option makes diff output for merge commits to be shown in the default format. -m will

produce the output only if -p is given as well. The default format could be changed using

log.diffMerges configuration parameter, which default value is separate.

--diff-merges=first-parent, --diff-merges=1

This option makes merge commits show the full diff with respect to the first parent only.

--diff-merges=separate

This makes merge commits show the full diff with respect to each of the parents. Separate

log entry and diff is generated for each parent.

--diff-merges=remerge, --diff-merges=r, --remerge-diff

With this option, two-parent merge commits are remerged to create a temporary tree object --

potentially containing files with conflict markers and such. A diff is then shown between that

temporary tree and the actual merge commit.

The output emitted when this option is used is subject to change, and so is its interaction with

other options (unless explicitly documented).

--diff-merges=combined, --diff-merges=c, -c

With this option, diff output for a merge commit shows the differences from each of the

parents to the merge result simultaneously instead of showing pairwise diff between a parent

and the result one at a time. Furthermore, it lists only files which were modified from all

parents. -c implies -p.

--diff-merges=dense-combined, --diff-merges=cc, --cc

With this option the output produced by --diff-merges=combined is further compressed by

omitting uninteresting hunks whose contents in the parents have only two variants and the

merge result picks one of them without modification. --cc implies -p.

--combined-all-paths

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

This flag causes combined diffs (used for merge commits) to list the name of the file from all

parents. It thus only has effect when --diff-merges=[dense-]combined is in use, and is likely only

useful if filename changes are detected (i.e. when either rename or copy detection have been

requested).

-U<n>, --unified=<n>

Generate diffs with <n> lines of context instead of the usual three. Implies --patch.

--output=<file>

Output to a specific file instead of stdout.

--output-indicator-new=<char>, --output-indicator-old=<char>, --output-indicator-context=<char>

Specify the character used to indicate new, old or context lines in the generated patch. Normally

they are +, - and ’ ’ respectively.

--raw

For each commit, show a summary of changes using the raw diff format. See the "RAW OUTPUT

FORMAT" section of git-diff(1). This is different from showing the log itself in raw format,

which you can achieve with --format=raw.

--patch-with-raw

Synonym for -p --raw.

-t

Show the tree objects in the diff output.

--indent-heuristic

Enable the heuristic that shifts diff hunk boundaries to make patches easier to read. This is the

default.

--no-indent-heuristic

Disable the indent heuristic.

--minimal

Spend extra time to make sure the smallest possible diff is produced.

--patience

Generate a diff using the "patience diff" algorithm.

--histogram

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

Generate a diff using the "histogram diff" algorithm.

--anchored=<text>

Generate a diff using the "anchored diff" algorithm.

This option may be specified more than once.

If a line exists in both the source and destination, exists only once, and starts with this text, this

algorithm attempts to prevent it from appearing as a deletion or addition in the output. It uses the

"patience diff" algorithm internally.

--diff-algorithm={patience|minimal|histogram|myers}

Choose a diff algorithm. The variants are as follows:

default, myers
The basic greedy diff algorithm. Currently, this is the default.

minimal
Spend extra time to make sure the smallest possible diff is produced.

patience
Use "patience diff" algorithm when generating patches.

histogram
This algorithm extends the patience algorithm to "support low-occurrence common

elements".

For instance, if you configured the diff.algorithm variable to a non-default value and want to use

the default one, then you have to use --diff-algorithm=default option.

--stat[=<width>[,<name-width>[,<count>]]]

Generate a diffstat. By default, as much space as necessary will be used for the filename part, and

the rest for the graph part. Maximum width defaults to terminal width, or 80 columns if not

connected to a terminal, and can be overridden by <width>. The width of the filename part can be

limited by giving another width <name-width> after a comma. The width of the graph part can be

limited by using --stat-graph-width=<width> (affects all commands generating a stat graph) or by

setting diff.statGraphWidth=<width> (does not affect git format-patch). By giving a third

parameter <count>, you can limit the output to the first <count> lines, followed by ... if there are

more.

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

These parameters can also be set individually with --stat-width=<width>,

--stat-name-width=<name-width> and --stat-count=<count>.

--compact-summary

Output a condensed summary of extended header information such as file creations or deletions

("new" or "gone", optionally "+l" if it’s a symlink) and mode changes ("+x" or "-x" for adding or

removing executable bit respectively) in diffstat. The information is put between the filename part

and the graph part. Implies --stat.

--numstat

Similar to --stat, but shows number of added and deleted lines in decimal notation and pathname

without abbreviation, to make it more machine friendly. For binary files, outputs two - instead of

saying 0 0.

--shortstat

Output only the last line of the --stat format containing total number of modified files, as well as

number of added and deleted lines.

-X[<param1,param2,...>], --dirstat[=<param1,param2,...>]

Output the distribution of relative amount of changes for each sub-directory. The behavior of

--dirstat can be customized by passing it a comma separated list of parameters. The defaults are

controlled by the diff.dirstat configuration variable (see git-config(1)). The following parameters

are available:

changes
Compute the dirstat numbers by counting the lines that have been removed from the source,

or added to the destination. This ignores the amount of pure code movements within a file. In

other words, rearranging lines in a file is not counted as much as other changes. This is the

default behavior when no parameter is given.

lines
Compute the dirstat numbers by doing the regular line-based diff analysis, and summing the

removed/added line counts. (For binary files, count 64-byte chunks instead, since binary files

have no natural concept of lines). This is a more expensive --dirstat behavior than the

changes behavior, but it does count rearranged lines within a file as much as other changes.

The resulting output is consistent with what you get from the other --*stat options.

files
Compute the dirstat numbers by counting the number of files changed. Each changed file

counts equally in the dirstat analysis. This is the computationally cheapest --dirstat behavior,

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

since it does not have to look at the file contents at all.

cumulative
Count changes in a child directory for the parent directory as well. Note that when using

cumulative, the sum of the percentages reported may exceed 100%. The default

(non-cumulative) behavior can be specified with the noncumulative parameter.

<limit>

An integer parameter specifies a cut-off percent (3% by default). Directories contributing less

than this percentage of the changes are not shown in the output.

Example: The following will count changed files, while ignoring directories with less than 10% of

the total amount of changed files, and accumulating child directory counts in the parent

directories: --dirstat=files,10,cumulative.

--cumulative

Synonym for --dirstat=cumulative

--dirstat-by-file[=<param1,param2>...]

Synonym for --dirstat=files,param1,param2...

--summary

Output a condensed summary of extended header information such as creations, renames and

mode changes.

--patch-with-stat

Synonym for -p --stat.

-z

Separate the commits with NULs instead of with new newlines.

Also, when --raw or --numstat has been given, do not munge pathnames and use NULs as output

field terminators.

Without this option, pathnames with "unusual" characters are quoted as explained for the

configuration variable core.quotePath (see git-config(1)).

--name-only

Show only names of changed files. The file names are often encoded in UTF-8. For more

information see the discussion about encoding in the git-log(1) manual page.

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

--name-status

Show only names and status of changed files. See the description of the --diff-filter option on what

the status letters mean. Just like --name-only the file names are often encoded in UTF-8.

--submodule[=<format>]

Specify how differences in submodules are shown. When specifying --submodule=short the short

format is used. This format just shows the names of the commits at the beginning and end of the

range. When --submodule or --submodule=log is specified, the log format is used. This format

lists the commits in the range like git-submodule(1) summary does. When --submodule=diff is

specified, the diff format is used. This format shows an inline diff of the changes in the submodule

contents between the commit range. Defaults to diff.submodule or the short format if the config

option is unset.

--color[=<when>]

Show colored diff. --color (i.e. without =<when>) is the same as --color=always. <when> can be

one of always, never, or auto.

--no-color

Turn off colored diff. It is the same as --color=never.

--color-moved[=<mode>]

Moved lines of code are colored differently. The <mode> defaults to no if the option is not given

and to zebra if the option with no mode is given. The mode must be one of:

no

Moved lines are not highlighted.

default

Is a synonym for zebra. This may change to a more sensible mode in the future.

plain

Any line that is added in one location and was removed in another location will be colored

with color.diff.newMoved. Similarly color.diff.oldMoved will be used for removed lines that

are added somewhere else in the diff. This mode picks up any moved line, but it is not very

useful in a review to determine if a block of code was moved without permutation.

blocks

Blocks of moved text of at least 20 alphanumeric characters are detected greedily. The

detected blocks are painted using either the color.diff.{old,new}Moved color. Adjacent

blocks cannot be told apart.

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

zebra

Blocks of moved text are detected as in blocks mode. The blocks are painted using either the

color.diff.{old,new}Moved color or color.diff.{old,new}MovedAlternative. The change

between the two colors indicates that a new block was detected.

dimmed-zebra

Similar to zebra, but additional dimming of uninteresting parts of moved code is performed.

The bordering lines of two adjacent blocks are considered interesting, the rest is

uninteresting. dimmed_zebra is a deprecated synonym.

--no-color-moved

Turn off move detection. This can be used to override configuration settings. It is the same as

--color-moved=no.

--color-moved-ws=<modes>

This configures how whitespace is ignored when performing the move detection for

--color-moved. These modes can be given as a comma separated list:

no

Do not ignore whitespace when performing move detection.

ignore-space-at-eol

Ignore changes in whitespace at EOL.

ignore-space-change

Ignore changes in amount of whitespace. This ignores whitespace at line end, and considers

all other sequences of one or more whitespace characters to be equivalent.

ignore-all-space

Ignore whitespace when comparing lines. This ignores differences even if one line has

whitespace where the other line has none.

allow-indentation-change

Initially ignore any whitespace in the move detection, then group the moved code blocks only

into a block if the change in whitespace is the same per line. This is incompatible with the

other modes.

--no-color-moved-ws

Do not ignore whitespace when performing move detection. This can be used to override

configuration settings. It is the same as --color-moved-ws=no.

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

--word-diff[=<mode>]

Show a word diff, using the <mode> to delimit changed words. By default, words are delimited by

whitespace; see --word-diff-regex below. The <mode> defaults to plain, and must be one of:

color

Highlight changed words using only colors. Implies --color.

plain

Show words as [-removed-] and {+added+}. Makes no attempts to escape the delimiters if

they appear in the input, so the output may be ambiguous.

porcelain

Use a special line-based format intended for script consumption. Added/removed/unchanged

runs are printed in the usual unified diff format, starting with a +/-/‘ ‘ character at the

beginning of the line and extending to the end of the line. Newlines in the input are

represented by a tilde ~ on a line of its own.

none

Disable word diff again.

Note that despite the name of the first mode, color is used to highlight the changed parts in all

modes if enabled.

--word-diff-regex=<regex>

Use <regex> to decide what a word is, instead of considering runs of non-whitespace to be a word.

Also implies --word-diff unless it was already enabled.

Every non-overlapping match of the <regex> is considered a word. Anything between these

matches is considered whitespace and ignored(!) for the purposes of finding differences. You may

want to append |[^[:space:]] to your regular expression to make sure that it matches all

non-whitespace characters. A match that contains a newline is silently truncated(!) at the newline.

For example, --word-diff-regex=. will treat each character as a word and, correspondingly, show

differences character by character.

The regex can also be set via a diff driver or configuration option, see gitattributes(5) or git-
config(1). Giving it explicitly overrides any diff driver or configuration setting. Diff drivers

override configuration settings.

--color-words[=<regex>]

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

Equivalent to --word-diff=color plus (if a regex was specified) --word-diff-regex=<regex>.

--no-renames

Turn off rename detection, even when the configuration file gives the default to do so.

--[no-]rename-empty

Whether to use empty blobs as rename source.

--check

Warn if changes introduce conflict markers or whitespace errors. What are considered whitespace

errors is controlled by core.whitespace configuration. By default, trailing whitespaces (including

lines that consist solely of whitespaces) and a space character that is immediately followed by a

tab character inside the initial indent of the line are considered whitespace errors. Exits with

non-zero status if problems are found. Not compatible with --exit-code.

--ws-error-highlight=<kind>

Highlight whitespace errors in the context, old or new lines of the diff. Multiple values are

separated by comma, none resets previous values, default reset the list to new and all is a

shorthand for old,new,context. When this option is not given, and the configuration variable

diff.wsErrorHighlight is not set, only whitespace errors in new lines are highlighted. The

whitespace errors are colored with color.diff.whitespace.

--full-index

Instead of the first handful of characters, show the full pre- and post-image blob object names on

the "index" line when generating patch format output.

--binary

In addition to --full-index, output a binary diff that can be applied with git-apply. Implies --patch.

--abbrev[=<n>]

Instead of showing the full 40-byte hexadecimal object name in diff-raw format output and

diff-tree header lines, show the shortest prefix that is at least <n> hexdigits long that uniquely

refers the object. In diff-patch output format, --full-index takes higher precedence, i.e. if

--full-index is specified, full blob names will be shown regardless of --abbrev. Non default

number of digits can be specified with --abbrev=<n>.

-B[<n>][/<m>], --break-rewrites[=[<n>][/<m>]]

Break complete rewrite changes into pairs of delete and create. This serves two purposes:

It affects the way a change that amounts to a total rewrite of a file not as a series of deletion and

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

insertion mixed together with a very few lines that happen to match textually as the context, but as

a single deletion of everything old followed by a single insertion of everything new, and the

number m controls this aspect of the -B option (defaults to 60%). -B/70% specifies that less than

30% of the original should remain in the result for Git to consider it a total rewrite (i.e. otherwise

the resulting patch will be a series of deletion and insertion mixed together with context lines).

When used with -M, a totally-rewritten file is also considered as the source of a rename (usually

-M only considers a file that disappeared as the source of a rename), and the number n controls

this aspect of the -B option (defaults to 50%). -B20% specifies that a change with addition and

deletion compared to 20% or more of the file’s size are eligible for being picked up as a possible

source of a rename to another file.

-M[<n>], --find-renames[=<n>]

If generating diffs, detect and report renames for each commit. For following files across renames

while traversing history, see --follow. If n is specified, it is a threshold on the similarity index (i.e.

amount of addition/deletions compared to the file’s size). For example, -M90% means Git should

consider a delete/add pair to be a rename if more than 90% of the file hasn’t changed. Without a

% sign, the number is to be read as a fraction, with a decimal point before it. I.e., -M5 becomes

0.5, and is thus the same as -M50%. Similarly, -M05 is the same as -M5%. To limit detection to

exact renames, use -M100%. The default similarity index is 50%.

-C[<n>], --find-copies[=<n>]

Detect copies as well as renames. See also --find-copies-harder. If n is specified, it has the same

meaning as for -M<n>.

--find-copies-harder

For performance reasons, by default, -C option finds copies only if the original file of the copy

was modified in the same changeset. This flag makes the command inspect unmodified files as

candidates for the source of copy. This is a very expensive operation for large projects, so use it

with caution. Giving more than one -C option has the same effect.

-D, --irreversible-delete

Omit the preimage for deletes, i.e. print only the header but not the diff between the preimage and

/dev/null. The resulting patch is not meant to be applied with patch or git apply; this is solely for

people who want to just concentrate on reviewing the text after the change. In addition, the output

obviously lacks enough information to apply such a patch in reverse, even manually, hence the

name of the option.

When used together with -B, omit also the preimage in the deletion part of a delete/create pair.

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

-l<num>

The -M and -C options involve some preliminary steps that can detect subsets of renames/copies

cheaply, followed by an exhaustive fallback portion that compares all remaining unpaired

destinations to all relevant sources. (For renames, only remaining unpaired sources are relevant;

for copies, all original sources are relevant.) For N sources and destinations, this exhaustive check

is O(N^2). This option prevents the exhaustive portion of rename/copy detection from running if

the number of source/destination files involved exceeds the specified number. Defaults to

diff.renameLimit. Note that a value of 0 is treated as unlimited.

--diff-filter=[(A|C|D|M|R|T|U|X|B)...[*]]

Select only files that are Added (A), Copied (C), Deleted (D), Modified (M), Renamed (R), have

their type (i.e. regular file, symlink, submodule, ...) changed (T), are Unmerged (U), are Unknown

(X), or have had their pairing Broken (B). Any combination of the filter characters (including

none) can be used. When * (All-or-none) is added to the combination, all paths are selected if

there is any file that matches other criteria in the comparison; if there is no file that matches other

criteria, nothing is selected.

Also, these upper-case letters can be downcased to exclude. E.g. --diff-filter=ad excludes added

and deleted paths.

Note that not all diffs can feature all types. For instance, copied and renamed entries cannot

appear if detection for those types is disabled.

-S<string>

Look for differences that change the number of occurrences of the specified string (i.e.

addition/deletion) in a file. Intended for the scripter’s use.

It is useful when you’re looking for an exact block of code (like a struct), and want to know the

history of that block since it first came into being: use the feature iteratively to feed the interesting

block in the preimage back into -S, and keep going until you get the very first version of the block.

Binary files are searched as well.

-G<regex>

Look for differences whose patch text contains added/removed lines that match <regex>.

To illustrate the difference between -S<regex> --pickaxe-regex and -G<regex>, consider a commit

with the following diff in the same file:

+ return frotz(nitfol, two->ptr, 1, 0);

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

...

- hit = frotz(nitfol, mf2.ptr, 1, 0);

While git log -G"frotz\(nitfol" will show this commit, git log -S"frotz\(nitfol" --pickaxe-regex will

not (because the number of occurrences of that string did not change).

Unless --text is supplied patches of binary files without a textconv filter will be ignored.

See the pickaxe entry in gitdiffcore(7) for more information.

--find-object=<object-id>

Look for differences that change the number of occurrences of the specified object. Similar to -S,

just the argument is different in that it doesn’t search for a specific string but for a specific object

id.

The object can be a blob or a submodule commit. It implies the -t option in git-log to also find

trees.

--pickaxe-all

When -S or -G finds a change, show all the changes in that changeset, not just the files that

contain the change in <string>.

--pickaxe-regex

Treat the <string> given to -S as an extended POSIX regular expression to match.

-O<orderfile>

Control the order in which files appear in the output. This overrides the diff.orderFile
configuration variable (see git-config(1)). To cancel diff.orderFile, use -O/dev/null.

The output order is determined by the order of glob patterns in <orderfile>. All files with

pathnames that match the first pattern are output first, all files with pathnames that match the

second pattern (but not the first) are output next, and so on. All files with pathnames that do not

match any pattern are output last, as if there was an implicit match-all pattern at the end of the file.

If multiple pathnames have the same rank (they match the same pattern but no earlier patterns),

their output order relative to each other is the normal order.

<orderfile> is parsed as follows:

+o

lines are ignored, so they can be used as separators for readability.

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

+o

starting with a hash ("#") are ignored, so they can be used for comments. Add a backslash ("\") to the

beginning of the pattern if it starts with a hash.

+o

other line contains a single pattern.

Patterns have the same syntax and semantics as patterns used for fnmatch(3) without the

FNM_PATHNAME flag, except a pathname also matches a pattern if removing any number of

the final pathname components matches the pattern. For example, the pattern "foo*bar" matches

"fooasdfbar" and "foo/bar/baz/asdf" but not "foobarx".

--skip-to=<file>, --rotate-to=<file>

Discard the files before the named <file> from the output (i.e. skip to), or move them to the end

of the output (i.e. rotate to). These were invented primarily for use of the git difftool command,

and may not be very useful otherwise.

-R

Swap two inputs; that is, show differences from index or on-disk file to tree contents.

--relative[=<path>], --no-relative

When run from a subdirectory of the project, it can be told to exclude changes outside the

directory and show pathnames relative to it with this option. When you are not in a subdirectory

(e.g. in a bare repository), you can name which subdirectory to make the output relative to by

giving a <path> as an argument. --no-relative can be used to countermand both diff.relative
config option and previous --relative.

-a, --text

Treat all files as text.

--ignore-cr-at-eol

Ignore carriage-return at the end of line when doing a comparison.

--ignore-space-at-eol

Ignore changes in whitespace at EOL.

-b, --ignore-space-change

Ignore changes in amount of whitespace. This ignores whitespace at line end, and considers all

other sequences of one or more whitespace characters to be equivalent.

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

-w, --ignore-all-space

Ignore whitespace when comparing lines. This ignores differences even if one line has whitespace

where the other line has none.

--ignore-blank-lines

Ignore changes whose lines are all blank.

-I<regex>, --ignore-matching-lines=<regex>

Ignore changes whose all lines match <regex>. This option may be specified more than once.

--inter-hunk-context=<lines>

Show the context between diff hunks, up to the specified number of lines, thereby fusing hunks

that are close to each other. Defaults to diff.interHunkContext or 0 if the config option is unset.

-W, --function-context

Show whole function as context lines for each change. The function names are determined in the

same way as git diff works out patch hunk headers (see Defining a custom hunk-header in

gitattributes(5)).

--ext-diff

Allow an external diff helper to be executed. If you set an external diff driver with gitattributes(5),

you need to use this option with git-log(1) and friends.

--no-ext-diff

Disallow external diff drivers.

--textconv, --no-textconv

Allow (or disallow) external text conversion filters to be run when comparing binary files. See

gitattributes(5) for details. Because textconv filters are typically a one-way conversion, the

resulting diff is suitable for human consumption, but cannot be applied. For this reason, textconv

filters are enabled by default only for git-diff(1) and git-log(1), but not for git-format-patch(1) or

diff plumbing commands.

--ignore-submodules[=<when>]

Ignore changes to submodules in the diff generation. <when> can be either "none", "untracked",

"dirty" or "all", which is the default. Using "none" will consider the submodule modified when it

either contains untracked or modified files or its HEAD differs from the commit recorded in the

superproject and can be used to override any settings of the ignore option in git-config(1) or

gitmodules(5). When "untracked" is used submodules are not considered dirty when they only

contain untracked content (but they are still scanned for modified content). Using "dirty" ignores

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

all changes to the work tree of submodules, only changes to the commits stored in the superproject

are shown (this was the behavior until 1.7.0). Using "all" hides all changes to submodules.

--src-prefix=<prefix>

Show the given source prefix instead of "a/".

--dst-prefix=<prefix>

Show the given destination prefix instead of "b/".

--no-prefix

Do not show any source or destination prefix.

--default-prefix

Use the default source and destination prefixes ("a/" and "b/"). This is usually the default already,

but may be used to override config such as diff.noprefix.

--line-prefix=<prefix>

Prepend an additional prefix to every line of output.

--ita-invisible-in-index

By default entries added by "git add -N" appear as an existing empty file in "git diff" and a new

file in "git diff --cached". This option makes the entry appear as a new file in "git diff" and

non-existent in "git diff --cached". This option could be reverted with --ita-visible-in-index. Both

options are experimental and could be removed in future.

For more detailed explanation on these common options, see also gitdiffcore(7).

GENERATING PATCH TEXT WITH -P
Running git-diff(1), git-log(1), git-show(1), git-diff-index(1), git-diff-tree(1), or git-diff-files(1) with

the -p option produces patch text. You can customize the creation of patch text via the

GIT_EXTERNAL_DIFF and the GIT_DIFF_OPTS environment variables (see git(1)), and the diff
attribute (see gitattributes(5)).

What the -p option produces is slightly different from the traditional diff format:

1.

is preceded with a "git diff" header that looks like this:

diff --git a/file1 b/file2

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

The a/ and b/ filenames are the same unless rename/copy is involved. Especially, even for

a creation or a deletion, /dev/null is not used in place of the a/ or b/ filenames.

When rename/copy is involved, file1 and file2 show the name of the source file of the

rename/copy and the name of the file that rename/copy produces, respectively.

2.

is followed by one or more extended header lines:

old mode <mode>

new mode <mode>

deleted file mode <mode>

new file mode <mode>

copy from <path>

copy to <path>

rename from <path>

rename to <path>

similarity index <number>

dissimilarity index <number>

index <hash>..<hash> <mode>

File modes are printed as 6-digit octal numbers including the file type and file permission bits.

Path names in extended headers do not include the a/ and b/ prefixes.

The similarity index is the percentage of unchanged lines, and the dissimilarity index is the

percentage of changed lines. It is a rounded down integer, followed by a percent sign. The

similarity index value of 100% is thus reserved for two equal files, while 100% dissimilarity

means that no line from the old file made it into the new one.

The index line includes the blob object names before and after the change. The <mode> is

included if the file mode does not change; otherwise, separate lines indicate the old and the new

mode.

3.

with "unusual" characters are quoted as explained for the configuration variable core.quotePath (see git-
config(1)).

4.

the file1 files in the output refer to files before the commit, and all the file2 files refer to files after the

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

commit. It is incorrect to apply each change to each file sequentially. For example,

this patch will swap a and b:

diff --git a/a b/b

rename from a

rename to b

diff --git a/b b/a

rename from b

rename to a

5.

headers mention the name of the function to which the hunk applies. See "Defining a custom

hunk-header" in gitattributes(5) for details of how to tailor to this to specific languages.

COMBINED DIFF FORMAT
Any diff-generating command can take the -c or --cc option to produce a combined diff when showing

a merge. This is the default format when showing merges with git-diff(1) or git-show(1). Note also that

you can give suitable --diff-merges option to any of these commands to force generation of diffs in

specific format.

A "combined diff" format looks like this:

diff --combined describe.c

index fabadb8,cc95eb0..4866510

--- a/describe.c

+++ b/describe.c

@@@ -98,20 -98,12 +98,20 @@@

return (a_date > b_date) ? -1 : (a_date == b_date) ? 0 : 1;

}

- static void describe(char *arg)

-static void describe(struct commit *cmit, int last_one)

++static void describe(char *arg, int last_one)

{

+ unsigned char sha1[20];

+ struct commit *cmit;

struct commit_list *list;

static int initialized = 0;

struct commit_name *n;

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

+ if (get_sha1(arg, sha1) < 0)

+ usage(describe_usage);

+ cmit = lookup_commit_reference(sha1);

+ if (!cmit)

+ usage(describe_usage);

+

if (!initialized) {

initialized = 1;

for_each_ref(get_name);

1.

is preceded with a "git diff" header, that looks like this (when the -c option is used):

diff --combined file

or like this (when the --cc option is used):

diff --cc file

2.

is followed by one or more extended header lines (this example shows a merge with two parents):

index <hash>,<hash>..<hash>

mode <mode>,<mode>..<mode>

new file mode <mode>

deleted file mode <mode>,<mode>

The mode <mode>,<mode>..<mode> line appears only if at least one of the <mode> is different

from the rest. Extended headers with information about detected contents movement (renames and

copying detection) are designed to work with diff of two <tree-ish> and are not used by combined

diff format.

3.

is followed by two-line from-file/to-file header

--- a/file

+++ b/file

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

Similar to two-line header for traditional unified diff format, /dev/null is

used to signal created or deleted files.

However, if the --combined-all-paths option is provided, instead of a

two-line from-file/to-file you get a N+1 line from-file/to-file header, where

N is the number of parents in the merge commit

--- a/file

--- a/file

--- a/file

+++ b/file

This extended format can be useful if rename or copy detection is active, to allow you to see the

original name of the file in different parents.

4.

header format is modified to prevent people from accidentally feeding it to patch -p1. Combined diff

format was created for review of merge commit changes, and was not meant to be applied. The change is

similar to the change in the extended index header:

@@@ <from-file-range> <from-file-range> <to-file-range> @@@

There are (number of parents + 1) @ characters in the chunk header for combined diff format.

Unlike the traditional unified diff format, which shows two files A and B with a single column that has

- (minus -- appears in A but removed in B), + (plus -- missing in A but added to B), or " " (space --

unchanged) prefix, this format compares two or more files file1, file2,... with one file X, and shows

how X differs from each of fileN. One column for each of fileN is prepended to the output line to note

how X’s line is different from it.

A - character in the column N means that the line appears in fileN but it does not appear in the result. A

+ character in the column N means that the line appears in the result, and fileN does not have that line

(in other words, the line was added, from the point of view of that parent).

In the above example output, the function signature was changed from both files (hence two - removals

from both file1 and file2, plus ++ to mean one line that was added does not appear in either file1 or

file2). Also eight other lines are the same from file1 but do not appear in file2 (hence prefixed with +).

When shown by git diff-tree -c, it compares the parents of a merge commit with the merge result (i.e.

file1..fileN are the parents). When shown by git diff-files -c, it compares the two unresolved merge

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

parents with the working tree file (i.e. file1 is stage 2 aka "our version", file2 is stage 3 aka

"their version").

EXAMPLES
git show v1.0.0

Shows the tag v1.0.0, along with the object the tags points at.

git show v1.0.0^{tree}
Shows the tree pointed to by the tag v1.0.0.

git show -s --format=%s v1.0.0^{commit}
Shows the subject of the commit pointed to by the tag v1.0.0.

git show next~10:Documentation/README
Shows the contents of the file Documentation/README as they were current in the 10th last

commit of the branch next.

git show master:Makefile master:t/Makefile
Concatenates the contents of said Makefiles in the head of the branch master.

DISCUSSION
Git is to some extent character encoding agnostic.

+o

contents of the blob objects are uninterpreted sequences of bytes. There is no encoding translation at the

core level.

+o

names are encoded in UTF-8 normalization form C. This applies to tree objects, the index file, ref names,

as well as path names in command line arguments, environment variables and config files (.git/config (see

git-config(1)), gitignore(5), gitattributes(5) and gitmodules(5)).

Note that Git at the core level treats path names simply as sequences of non-NUL bytes, there are no path

name encoding conversions (except on Mac and Windows). Therefore, using non-ASCII path names will

mostly work even on platforms and file systems that use legacy extended ASCII encodings. However,

repositories created on such systems will not work properly on UTF-8-based systems (e.g. Linux, Mac,

Windows) and vice versa. Additionally, many Git-based tools simply assume path names to be UTF-8 and

will fail to display other encodings correctly.

+o

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

log messages are typically encoded in UTF-8, but other extended ASCII encodings

are also supported. This includes ISO-8859-x, CP125x and many others, but not

UTF-16/32, EBCDIC and CJK multi-byte encodings (GBK, Shift-JIS, Big5,

EUC-x, CP9xx etc.).

Although we encourage that the commit log messages are encoded in UTF-8, both the core and Git

Porcelain are designed not to force UTF-8 on projects. If all participants of a particular project find it

more convenient to use legacy encodings, Git does not forbid it. However, there are a few things to

keep in mind.

1.

commit and git commit-tree issues a warning if the commit log message given to it does not look like a

valid UTF-8 string, unless you explicitly say your project uses a legacy encoding. The way to say this is to

have i18n.commitEncoding in .git/config file, like this:

[i18n]

commitEncoding = ISO-8859-1

Commit objects created with the above setting record the value of i18n.commitEncoding in its

encoding header. This is to help other people who look at them later. Lack of this header implies

that the commit log message is encoded in UTF-8.

2.

log, git show, git blame and friends look at the encoding header of a commit object, and try to re-code the

log message into UTF-8 unless otherwise specified. You can specify the desired output encoding with

i18n.logOutputEncoding in .git/config file, like this:

[i18n]

logOutputEncoding = ISO-8859-1

If you do not have this configuration variable, the value of i18n.commitEncoding is used instead.

Note that we deliberately chose not to re-code the commit log message when a commit is made to force

UTF-8 at the commit object level, because re-coding to UTF-8 is not necessarily a reversible operation.

GIT
Part of the git(1) suite

GIT-SHOW(1) Git Manual GIT-SHOW(1)

Git 2.42.0 2023-08-21 GIT-SHOW(1)

