
NAME
git-sparse-checkout - Reduce your working tree to a subset of tracked files

SYNOPSIS
git sparse-checkout (init | list | set | add | reapply | disable | check-rules) [<options>]

DESCRIPTION
This command is used to create sparse checkouts, which change the working tree from having all

tracked files present to only having a subset of those files. It can also switch which subset of files are

present, or undo and go back to having all tracked files present in the working copy.

The subset of files is chosen by providing a list of directories in cone mode (the default), or by

providing a list of patterns in non-cone mode.

When in a sparse-checkout, other Git commands behave a bit differently. For example, switching

branches will not update paths outside the sparse-checkout directories/patterns, and git commit -a will

not record paths outside the sparse-checkout directories/patterns as deleted.

THIS COMMAND IS EXPERIMENTAL. ITS BEHAVIOR, AND THE BEHAVIOR OF OTHER

COMMANDS IN THE PRESENCE OF SPARSE-CHECKOUTS, WILL LIKELY CHANGE IN THE

FUTURE.

COMMANDS
list

Describe the directories or patterns in the sparse-checkout file.

set

Enable the necessary sparse-checkout config settings (core.sparseCheckout,
core.sparseCheckoutCone, and index.sparse) if they are not already set to the desired values,

populate the sparse-checkout file from the list of arguments following the set subcommand, and

update the working directory to match.

To ensure that adjusting the sparse-checkout settings within a worktree does not alter the

sparse-checkout settings in other worktrees, the set subcommand will upgrade your repository

config to use worktree-specific config if not already present. The sparsity defined by the

arguments to the set subcommand are stored in the worktree-specific sparse-checkout file. See git-
worktree(1) and the documentation of extensions.worktreeConfig in git-config(1) for more details.

When the --stdin option is provided, the directories or patterns are read from standard in as a

GIT-SPARSE-CHECKOUT(1) Git Manual GIT-SPARSE-CHECKOUT(1)

Git 2.42.0 2023-08-21 GIT-SPARSE-CHECKOUT(1)

newline-delimited list instead of from the arguments.

By default, the input list is considered a list of directories, matching the output of git ls-tree -d
--name-only. This includes interpreting pathnames that begin with a double quote (") as C-style

quoted strings. Note that all files under the specified directories (at any depth) will be included in

the sparse checkout, as well as files that are siblings of either the given directory or any of its

ancestors (see CONE PATTERN SET below for more details). In the past, this was not the

default, and --cone needed to be specified or core.sparseCheckoutCone needed to be enabled.

When --no-cone is passed, the input list is considered a list of patterns. This mode has a number of

drawbacks, including not working with some options like --sparse-index. As explained in the

"Non-cone Problems" section below, we do not recommend using it.

Use the --[no-]sparse-index option to use a sparse index (the default is to not use it). A sparse

index reduces the size of the index to be more closely aligned with your sparse-checkout

definition. This can have significant performance advantages for commands such as git status or

git add. This feature is still experimental. Some commands might be slower with a sparse index

until they are properly integrated with the feature.

WARNING: Using a sparse index requires modifying the index in a way that is not completely

understood by external tools. If you have trouble with this compatibility, then run git
sparse-checkout init --no-sparse-index to rewrite your index to not be sparse. Older versions of Git

will not understand the sparse directory entries index extension and may fail to interact with your

repository until it is disabled.

add

Update the sparse-checkout file to include additional directories (in cone mode) or patterns (in

non-cone mode). By default, these directories or patterns are read from the command-line

arguments, but they can be read from stdin using the --stdin option.

reapply

Reapply the sparsity pattern rules to paths in the working tree. Commands like merge or rebase

can materialize paths to do their work (e.g. in order to show you a conflict), and other

sparse-checkout commands might fail to sparsify an individual file (e.g. because it has unstaged

changes or conflicts). In such cases, it can make sense to run git sparse-checkout reapply later

after cleaning up affected paths (e.g. resolving conflicts, undoing or committing changes, etc.).

The reapply command can also take --[no-]cone and --[no-]sparse-index flags, with the same

meaning as the flags from the set command, in order to change which sparsity mode you are using

without needing to also respecify all sparsity paths.

GIT-SPARSE-CHECKOUT(1) Git Manual GIT-SPARSE-CHECKOUT(1)

Git 2.42.0 2023-08-21 GIT-SPARSE-CHECKOUT(1)

disable

Disable the core.sparseCheckout config setting, and restore the working directory to include all

files.

init

Deprecated command that behaves like set with no specified paths. May be removed in the future.

Historically, set did not handle all the necessary config settings, which meant that both init and set
had to be called. Invoking both meant the init step would first remove nearly all tracked files (and

in cone mode, ignored files too), then the set step would add many of the tracked files (but not

ignored files) back. In addition to the lost files, the performance and UI of this combination was

poor.

Also, historically, init would not actually initialize the sparse-checkout file if it already existed.

This meant it was possible to return to a sparse-checkout without remembering which paths to

pass to a subsequent set or add command. However, --cone and --sparse-index options would not

be remembered across the disable command, so the easy restore of calling a plain init decreased in

utility.

check-rules

Check whether sparsity rules match one or more paths.

By default check-rules reads a list of paths from stdin and outputs only the ones that match the

current sparsity rules. The input is expected to consist of one path per line, matching the output of

git ls-tree --name-only including that pathnames that begin with a double quote (") are interpreted

as C-style quoted strings.

When called with the --rules-file <file> flag the input files are matched against the sparse

checkout rules found in <file> instead of the current ones. The rules in the files are expected to be

in the same form as accepted by git sparse-checkout set --stdin (in particular, they must be

newline-delimited).

By default, the rules passed to the --rules-file option are interpreted as cone mode directories. To

pass non-cone mode patterns with --rules-file, combine the option with the --no-cone option.

When called with the -z flag, the format of the paths input on stdin as well as the output paths are

\0 terminated and not quoted. Note that this does not apply to the format of the rules passed with

the --rules-file option.

EXAMPLES

GIT-SPARSE-CHECKOUT(1) Git Manual GIT-SPARSE-CHECKOUT(1)

Git 2.42.0 2023-08-21 GIT-SPARSE-CHECKOUT(1)

git sparse-checkout set MY/DIR1 SUB/DIR2
Change to a sparse checkout with all files (at any depth) under MY/DIR1/ and SUB/DIR2/ present

in the working copy (plus all files immediately under MY/ and SUB/ and the toplevel directory).

If already in a sparse checkout, change which files are present in the working copy to this new

selection. Note that this command will also delete all ignored files in any directory that no longer

has either tracked or non-ignored-untracked files present.

git sparse-checkout disable
Repopulate the working directory with all files, disabling sparse checkouts.

git sparse-checkout add SOME/DIR/ECTORY
Add all files under SOME/DIR/ECTORY/ (at any depth) to the sparse checkout, as well as all

files immediately under SOME/DIR/ and immediately under SOME/. Must already be in a sparse

checkout before using this command.

git sparse-checkout reapply
It is possible for commands to update the working tree in a way that does not respect the selected

sparsity directories. This can come from tools external to Git writing files, or even affect Git

commands because of either special cases (such as hitting conflicts when merging/rebasing), or

because some commands didn’t fully support sparse checkouts (e.g. the old recursive merge

backend had only limited support). This command reapplies the existing sparse directory

specifications to make the working directory match.

INTERNALS -- SPARSE CHECKOUT
"Sparse checkout" allows populating the working directory sparsely. It uses the skip-worktree bit (see

git-update-index(1)) to tell Git whether a file in the working directory is worth looking at. If the

skip-worktree bit is set, and the file is not present in the working tree, then its absence is ignored. Git

will avoid populating the contents of those files, which makes a sparse checkout helpful when working

in a repository with many files, but only a few are important to the current user.

The $GIT_DIR/info/sparse-checkout file is used to define the skip-worktree reference bitmap. When

Git updates the working directory, it updates the skip-worktree bits in the index based on this file. The

files matching the patterns in the file will appear in the working directory, and the rest will not.

INTERNALS -- NON-CONE PROBLEMS
The $GIT_DIR/info/sparse-checkout file populated by the set and add subcommands is defined to be a

bunch of patterns (one per line) using the same syntax as .gitignore files. In cone mode, these patterns

are restricted to matching directories (and users only ever need supply or see directory names), while in

non-cone mode any gitignore-style pattern is permitted. Using the full gitignore-style patterns in

non-cone mode has a number of shortcomings:

GIT-SPARSE-CHECKOUT(1) Git Manual GIT-SPARSE-CHECKOUT(1)

Git 2.42.0 2023-08-21 GIT-SPARSE-CHECKOUT(1)

+o

it makes various worktree-updating processes (pull, merge, rebase, switch, reset, checkout, etc.) require

O(N*M) pattern matches, where N is the number of patterns and M is the number of paths in the index.

This scales poorly.

+o

the scaling issue has to be done via limiting the number of patterns via specifying leading directory name

or glob.

+o

globs on the command line is error-prone as users may forget to quote the glob, causing the shell to

expand it into all matching files and pass them all individually along to sparse-checkout set/add. While

this could also be a problem with e.g. "git grep -- *.c", mistakes with grep/log/status appear in the

immediate output. With sparse-checkout, the mistake gets recorded at the time the sparse-checkout

command is run and might not be problematic until the user later switches branches or rebases or merges,

thus putting a delay between the user’s error and when they have a chance to catch/notice it.

+o

to the previous item, sparse-checkout has an add subcommand but no remove subcommand. Even if a

remove subcommand were added, undoing an accidental unquoted glob runs the risk of "removing too

much", as it may remove entries that had been included before the accidental add.

+o

mode uses gitignore-style patterns to select what to include (with the exception of negated patterns), while

.gitignore files use gitignore-style patterns to select what to exclude (with the exception of negated

patterns). The documentation on gitignore-style patterns usually does not talk in terms of matching or

non-matching, but on what the user wants to "exclude". This can cause confusion for users trying to learn

how to specify sparse-checkout patterns to get their desired behavior.

+o

other git subcommand that wants to provide "special path pattern matching" of some sort uses pathspecs,

but non-cone mode for sparse-checkout uses gitignore patterns, which feels inconsistent.

+o

has edge cases where the "right" behavior is unclear. Two examples:

First, two users are in a subdirectory, and the first runs

git sparse-checkout set ’/toplevel-dir/*.c’

while the second runs

git sparse-checkout set relative-dir

GIT-SPARSE-CHECKOUT(1) Git Manual GIT-SPARSE-CHECKOUT(1)

Git 2.42.0 2023-08-21 GIT-SPARSE-CHECKOUT(1)

Should those arguments be transliterated into

current/subdirectory/toplevel-dir/*.c

and

current/subdirectory/relative-dir

before inserting into the sparse-checkout file? The user

the first command is probably aware that arguments to set/add

supposed to be patterns in non-cone mode, and probably

happy with such a transliteration. However, many gitignore-style

patterns are just paths, which might be what the user who

second command was thinking, and they’d be upset if their

wasn’t transliterated.

Second, what should bash-completion complete on for set/add commands

for non-cone users? If it suggests paths, is it exacerbating the

problem above? Also, if it suggests paths, what if the user has a

file or directory that begins with either a ’!’ or ’#’ or has a ’*’,

’\’, ’?’, ’[’, or ’]’ in its name? And if it suggests paths, will

it complete "/pro" to "/proc" (in the root filesystem) rather than to

"/progress.txt" in the current directory? (Note that users are

likely to want to start paths with a leading ’/’ in non-cone mode,

for the same reason that .gitignore files often have one.)

Completing on files or directories might give nasty surprises in

all these cases.

+o

excessive flexibility made other extensions essentially impractical. --sparse-index is likely impossible in

non-cone mode; even if it is somehow feasible, it would have been far more work to implement and may

have been too slow in practice. Some ideas for adding coupling between partial clones and sparse

checkouts are only practical with a more restricted set of paths as well.

For all these reasons, non-cone mode is deprecated. Please switch to using cone mode.

INTERNALS -- CONE MODE HANDLING
The "cone mode", which is the default, lets you specify only what directories to include. For any

directory specified, all paths below that directory will be included, and any paths immediately under

leading directories (including the toplevel directory) will also be included. Thus, if you specified the

directory Documentation/technical/ then your sparse checkout would contain:

+o

files in the toplevel-directory

GIT-SPARSE-CHECKOUT(1) Git Manual GIT-SPARSE-CHECKOUT(1)

Git 2.42.0 2023-08-21 GIT-SPARSE-CHECKOUT(1)

+o

files immediately under Documentation/

+o

files at any depth under Documentation/technical/

Also, in cone mode, even if no directories are specified, then the files in the toplevel directory will be

included.

When changing the sparse-checkout patterns in cone mode, Git will inspect each tracked directory that

is not within the sparse-checkout cone to see if it contains any untracked files. If all of those files are

ignored due to the .gitignore patterns, then the directory will be deleted. If any of the untracked files

within that directory is not ignored, then no deletions will occur within that directory and a warning

message will appear. If these files are important, then reset your sparse-checkout definition so they are

included, use git add and git commit to store them, then remove any remaining files manually to ensure

Git can behave optimally.

See also the "Internals -- Cone Pattern Set" section to learn how the directories are transformed under

the hood into a subset of the Full Pattern Set of sparse-checkout.

INTERNALS -- FULL PATTERN SET
The full pattern set allows for arbitrary pattern matches and complicated inclusion/exclusion rules.

These can result in O(N*M) pattern matches when updating the index, where N is the number of

patterns and M is the number of paths in the index. To combat this performance issue, a more restricted

pattern set is allowed when core.sparseCheckoutCone is enabled.

The sparse-checkout file uses the same syntax as .gitignore files; see gitignore(5) for details. Here,

though, the patterns are usually being used to select which files to include rather than which files to

exclude. (However, it can get a bit confusing since gitignore-style patterns have negations defined by

patterns which begin with a !, so you can also select files to not include.)

For example, to select everything, and then to remove the file unwanted (so that every file will appear

in your working tree except the file named unwanted):

git sparse-checkout set --no-cone ’/*’ ’!unwanted’

These patterns are just placed into the $GIT_DIR/info/sparse-checkout as-is, so the contents of that file

at this point would be

/*

GIT-SPARSE-CHECKOUT(1) Git Manual GIT-SPARSE-CHECKOUT(1)

Git 2.42.0 2023-08-21 GIT-SPARSE-CHECKOUT(1)

!unwanted

See also the "Sparse Checkout" section of git-read-tree(1) to learn more about the gitignore-style

patterns used in sparse checkouts.

INTERNALS -- CONE PATTERN SET
In cone mode, only directories are accepted, but they are translated into the same gitignore-style

patterns used in the full pattern set. We refer to the particular patterns used in those mode as being of

one of two types:

1.

All paths inside a directory are included.

2.

All files immediately inside a directory are included.

Since cone mode always includes files at the toplevel, when running git sparse-checkout set with no

directories specified, the toplevel directory is added as a parent pattern. At this point, the

sparse-checkout file contains the following patterns:

/*

!/*/

This says "include everything immediately under the toplevel directory, but nothing at any level below

that."

When in cone mode, the git sparse-checkout set subcommand takes a list of directories. The command

git sparse-checkout set A/B/C sets the directory A/B/C as a recursive pattern, the directories A and A/B
are added as parent patterns. The resulting sparse-checkout file is now

/*

!/*/

/A/

!/A/*/

/A/B/

!/A/B/*/

/A/B/C/

GIT-SPARSE-CHECKOUT(1) Git Manual GIT-SPARSE-CHECKOUT(1)

Git 2.42.0 2023-08-21 GIT-SPARSE-CHECKOUT(1)

Here, order matters, so the negative patterns are overridden by the positive patterns that

appear lower in the file.

Unless core.sparseCheckoutCone is explicitly set to false, Git will parse the

sparse-checkout file expecting patterns of these types. Git will warn if the patterns do

not match. If the patterns do match the expected format, then Git will use faster

hash-based algorithms to compute inclusion in the sparse-checkout. If they do not

match, git will behave as though core.sparseCheckoutCone was false, regardless of its

setting.

In the cone mode case, despite the fact that full patterns are written to the

$GIT_DIR/info/sparse-checkout file, the git sparse-checkout list subcommand will list

the directories that define the recursive patterns. For the example sparse-checkout file

above, the output is as follows:

$ git sparse-checkout list

A/B/C

If core.ignoreCase=true, then the pattern-matching algorithm will use a case-insensitive check. This

corrects for case mismatched filenames in the git sparse-checkout set command to reflect the expected

cone in the working directory.

INTERNALS -- SUBMODULES
If your repository contains one or more submodules, then submodules are populated based on

interactions with the git submodule command. Specifically, git submodule init -- <path> will ensure the

submodule at <path> is present, while git submodule deinit [-f] -- <path> will remove the files for the

submodule at <path> (including any untracked files, uncommitted changes, and unpushed history).

Similar to how sparse-checkout removes files from the working tree but still leaves entries in the index,

deinitialized submodules are removed from the working directory but still have an entry in the index.

Since submodules may have unpushed changes or untracked files, removing them could result in data

loss. Thus, changing sparse inclusion/exclusion rules will not cause an already checked out submodule

to be removed from the working copy. Said another way, just as checkout will not cause submodules to

be automatically removed or initialized even when switching between branches that remove or add

submodules, using sparse-checkout to reduce or expand the scope of "interesting" files will not cause

submodules to be automatically deinitialized or initialized either.

Further, the above facts mean that there are multiple reasons that "tracked" files might not be present in

the working copy: sparsity pattern application from sparse-checkout, and submodule initialization state.

GIT-SPARSE-CHECKOUT(1) Git Manual GIT-SPARSE-CHECKOUT(1)

Git 2.42.0 2023-08-21 GIT-SPARSE-CHECKOUT(1)

Thus, commands like git grep that work on tracked files in the working copy may return results that are

limited by either or both of these restrictions.

SEE ALSO
git-read-tree(1) gitignore(5)

GIT
Part of the git(1) suite

GIT-SPARSE-CHECKOUT(1) Git Manual GIT-SPARSE-CHECKOUT(1)

Git 2.42.0 2023-08-21 GIT-SPARSE-CHECKOUT(1)

