
NAME
git-status - Show the working tree status

SYNOPSIS
git status [<options>] [--] [<pathspec>...]

DESCRIPTION
Displays paths that have differences between the index file and the current HEAD commit, paths that

have differences between the working tree and the index file, and paths in the working tree that are not

tracked by Git (and are not ignored by gitignore(5)). The first are what you would commit by running

git commit; the second and third are what you could commit by running git add before running git
commit.

OPTIONS
-s, --short

Give the output in the short-format.

-b, --branch

Show the branch and tracking info even in short-format.

--show-stash

Show the number of entries currently stashed away.

--porcelain[=<version>]

Give the output in an easy-to-parse format for scripts. This is similar to the short output, but will

remain stable across Git versions and regardless of user configuration. See below for details.

The version parameter is used to specify the format version. This is optional and defaults to the

original version v1 format.

--long

Give the output in the long-format. This is the default.

-v, --verbose

In addition to the names of files that have been changed, also show the textual changes that are

staged to be committed (i.e., like the output of git diff --cached). If -v is specified twice, then also

show the changes in the working tree that have not yet been staged (i.e., like the output of git diff).

-u[<mode>], --untracked-files[=<mode>]

GIT-STATUS(1) Git Manual GIT-STATUS(1)

Git 2.45.2 2024-05-30 GIT-STATUS(1)

Show untracked files.

The mode parameter is used to specify the handling of untracked files. It is optional: it defaults to

all, and if specified, it must be stuck to the option (e.g. -uno, but not -u no).

The possible options are:

+o

- Show no untracked files.

+o

- Shows untracked files and directories.

+o

- Also shows individual files in untracked directories.

When -u option is not used, untracked files and directories are shown (i.e. the same as specifying

normal), to help you avoid forgetting to add newly created files. Because it takes extra work to

find untracked files in the filesystem, this mode may take some time in a large working tree.

Consider enabling untracked cache and split index if supported (see git update-index
--untracked-cache and git update-index --split-index), Otherwise you can use no to have git status
return more quickly without showing untracked files. All usual spellings for Boolean value true
are taken as normal and false as no.

The default can be changed using the status.showUntrackedFiles configuration variable

documented in git-config(1).

--ignore-submodules[=<when>]

Ignore changes to submodules when looking for changes. <when> can be either "none",

"untracked", "dirty" or "all", which is the default. Using "none" will consider the submodule

modified when it either contains untracked or modified files or its HEAD differs from the commit

recorded in the superproject and can be used to override any settings of the ignore option in git-
config(1) or gitmodules(5). When "untracked" is used submodules are not considered dirty when

they only contain untracked content (but they are still scanned for modified content). Using "dirty"

ignores all changes to the work tree of submodules, only changes to the commits stored in the

superproject are shown (this was the behavior before 1.7.0). Using "all" hides all changes to

submodules (and suppresses the output of submodule summaries when the config option

status.submoduleSummary is set).

--ignored[=<mode>]

GIT-STATUS(1) Git Manual GIT-STATUS(1)

Git 2.45.2 2024-05-30 GIT-STATUS(1)

Show ignored files as well.

The mode parameter is used to specify the handling of ignored files. It is optional: it defaults to

traditional.

The possible options are:

+o

- Shows ignored files and directories, unless --untracked-files=all is specified, in which case

individual files in ignored directories are displayed.

+o

- Show no ignored files.

+o

- Shows ignored files and directories matching an ignore pattern.

When matching mode is specified, paths that explicitly match an ignored pattern are shown. If a

directory matches an ignore pattern, then it is shown, but not paths contained in the ignored

directory. If a directory does not match an ignore pattern, but all contents are ignored, then the

directory is not shown, but all contents are shown.

-z

Terminate entries with NUL, instead of LF. This implies the --porcelain=v1 output format if no

other format is given.

--column[=<options>], --no-column

Display untracked files in columns. See configuration variable column.status for option syntax.

--column and --no-column without options are equivalent to always and never respectively.

--ahead-behind, --no-ahead-behind

Display or do not display detailed ahead/behind counts for the branch relative to its upstream

branch. Defaults to true.

--renames, --no-renames

Turn on/off rename detection regardless of user configuration. See also git-diff(1) --no-renames.

--find-renames[=<n>]

Turn on rename detection, optionally setting the similarity threshold. See also git-diff(1)

--find-renames.

GIT-STATUS(1) Git Manual GIT-STATUS(1)

Git 2.45.2 2024-05-30 GIT-STATUS(1)

<pathspec>...

See the pathspec entry in gitglossary(7).

OUTPUT
The output from this command is designed to be used as a commit template comment. The default,

long format, is designed to be human readable, verbose and descriptive. Its contents and format are

subject to change at any time.

The paths mentioned in the output, unlike many other Git commands, are made relative to the current

directory if you are working in a subdirectory (this is on purpose, to help cutting and pasting). See the

status.relativePaths config option below.

Short Format
In the short-format, the status of each path is shown as one of these forms

XY PATH

XY ORIG_PATH -> PATH

where ORIG_PATH is where the renamed/copied contents came from. ORIG_PATH is only shown

when the entry is renamed or copied. The XY is a two-letter status code.

The fields (including the ->) are separated from each other by a single space. If a filename contains

whitespace or other nonprintable characters, that field will be quoted in the manner of a C string literal:

surrounded by ASCII double quote (34) characters, and with interior special characters

backslash-escaped.

There are three different types of states that are shown using this format, and each one uses the XY
syntax differently:

+o

a merge is occurring and the merge was successful, or outside of a merge situation, X shows the status of

the index and Y shows the status of the working tree.

+o

a merge conflict has occurred and has not yet been resolved, X and Y show the state introduced by each

head of the merge, relative to the common ancestor. These paths are said to be unmerged.

+o

a path is untracked, X and Y are always the same, since they are unknown to the index. ?? is used for

untracked paths. Ignored files are not listed unless --ignored is used; if it is, ignored files are indicated by

GIT-STATUS(1) Git Manual GIT-STATUS(1)

Git 2.45.2 2024-05-30 GIT-STATUS(1)

!!.

Note that the term merge here also includes rebases using the default --merge strategy, cherry-picks,

and anything else using the merge machinery.

In the following table, these three classes are shown in separate sections, and these characters are used

for X and Y fields for the first two sections that show tracked paths:

+o

’ = unmodified

+o

= modified

+o

= file type changed (regular file, symbolic link or submodule)

+o

= added

+o

= deleted

+o

= renamed

+o

= copied (if config option status.renames is set to "copies")

+o

= updated but unmerged

X Y Meaning

[AMD] not updated

M [MTD] updated in index

T [MTD] type changed in index

A [MTD] added to index

D deleted from index

R [MTD] renamed in index

GIT-STATUS(1) Git Manual GIT-STATUS(1)

Git 2.45.2 2024-05-30 GIT-STATUS(1)

C [MTD] copied in index

[MTARC] index and work tree matches

[MTARC] M work tree changed since index

[MTARC] T type changed in work tree since index

[MTARC] D deleted in work tree

R renamed in work tree

C copied in work tree

D D unmerged, both deleted

A U unmerged, added by us

U D unmerged, deleted by them

U A unmerged, added by them

D U unmerged, deleted by us

A A unmerged, both added

U U unmerged, both modified

? ? untracked

! ! ignored

Submodules have more state and instead report

+o

= the submodule has a different HEAD than recorded in the index

+o

= the submodule has modified content

+o

= the submodule has untracked files

This is since modified content or untracked files in a submodule cannot be added via git add in the

superproject to prepare a commit.

m and ? are applied recursively. For example if a nested submodule in a submodule contains an

untracked file, this is reported as ? as well.

If -b is used the short-format status is preceded by a line

branchname tracking info

GIT-STATUS(1) Git Manual GIT-STATUS(1)

Git 2.45.2 2024-05-30 GIT-STATUS(1)

Porcelain Format Version 1
Version 1 porcelain format is similar to the short format, but is guaranteed not to change in a

backwards-incompatible way between Git versions or based on user configuration. This makes it ideal

for parsing by scripts. The description of the short format above also describes the porcelain format,

with a few exceptions:

1.

user’s color.status configuration is not respected; color will always be off.

2.

user’s status.relativePaths configuration is not respected; paths shown will always be relative to the

repository root.

There is also an alternate -z format recommended for machine parsing. In that format, the status field is

the same, but some other things change. First, the -> is omitted from rename entries and the field order

is reversed (e.g from -> to becomes to from). Second, a NUL (ASCII 0) follows each filename,

replacing space as a field separator and the terminating newline (but a space still separates the status

field from the first filename). Third, filenames containing special characters are not specially

formatted; no quoting or backslash-escaping is performed.

Any submodule changes are reported as modified M instead of m or single ?.

Porcelain Format Version 2
Version 2 format adds more detailed information about the state of the worktree and changed items.

Version 2 also defines an extensible set of easy to parse optional headers.

Header lines start with "#" and are added in response to specific command line arguments. Parsers

should ignore headers they don’t recognize.

Branch Headers

If --branch is given, a series of header lines are printed with information about the current branch.

Line Notes

--

branch.oid <commit> | (initial) Current commit.

branch.head <branch> | (detached) Current branch.

branch.upstream <upstream-branch> If upstream is set.

branch.ab +<ahead> -<behind> If upstream is set and

the commit is present.

GIT-STATUS(1) Git Manual GIT-STATUS(1)

Git 2.45.2 2024-05-30 GIT-STATUS(1)

--

Stash Information

If --show-stash is given, one line is printed showing the number of stash entries if non-zero:

stash <N>

Changed Tracked Entries

Following the headers, a series of lines are printed for tracked entries. One of three different line

formats may be used to describe an entry depending on the type of change. Tracked entries are

printed in an undefined order; parsers should allow for a mixture of the 3 line types in any order.

Ordinary changed entries have the following format:

1 <XY> <sub> <mH> <mI> <mW> <hH> <hI> <path>

Renamed or copied entries have the following format:

2 <XY> <sub> <mH> <mI> <mW> <hH> <hI> <X><score> <path><sep><origPath>

Field Meaning

--

<XY> A 2 character field containing the staged and

unstaged XY values described in the short format,

with unchanged indicated by a "." rather than

a space.

<sub> A 4 character field describing the submodule state.

"N..." when the entry is not a submodule.

"S<c><m><u>" when the entry is a submodule.

<c> is "C" if the commit changed; otherwise ".".

<m> is "M" if it has tracked changes; otherwise ".".

<u> is "U" if there are untracked changes; otherwise ".".

<mH> The octal file mode in HEAD.

<mI> The octal file mode in the index.

<mW> The octal file mode in the worktree.

<hH> The object name in HEAD.

<hI> The object name in the index.

<X><score> The rename or copy score (denoting the percentage

GIT-STATUS(1) Git Manual GIT-STATUS(1)

Git 2.45.2 2024-05-30 GIT-STATUS(1)

of similarity between the source and target of the

move or copy). For example "R100" or "C75".

<path> The pathname. In a renamed/copied entry, this

is the target path.

<sep> When the ‘-z‘ option is used, the 2 pathnames are separated

with a NUL (ASCII 0x00) byte; otherwise, a tab (ASCII 0x09)

byte separates them.

<origPath> The pathname in the commit at HEAD or in the index.

This is only present in a renamed/copied entry, and

tells where the renamed/copied contents came from.

--

Unmerged entries have the following format; the first character is a "u" to distinguish from

ordinary changed entries.

u <XY> <sub> <m1> <m2> <m3> <mW> <h1> <h2> <h3> <path>

Field Meaning

--

<XY> A 2 character field describing the conflict type

as described in the short format.

<sub> A 4 character field describing the submodule state

as described above.

<m1> The octal file mode in stage 1.

<m2> The octal file mode in stage 2.

<m3> The octal file mode in stage 3.

<mW> The octal file mode in the worktree.

<h1> The object name in stage 1.

<h2> The object name in stage 2.

<h3> The object name in stage 3.

<path> The pathname.

--

Other Items

Following the tracked entries (and if requested), a series of lines will be printed for untracked and

then ignored items found in the worktree.

Untracked items have the following format:

GIT-STATUS(1) Git Manual GIT-STATUS(1)

Git 2.45.2 2024-05-30 GIT-STATUS(1)

? <path>

Ignored items have the following format:

! <path>

Pathname Format Notes and -z

When the -z option is given, pathnames are printed as is and without any quoting and lines are

terminated with a NUL (ASCII 0x00) byte.

Without the -z option, pathnames with "unusual" characters are quoted as explained for the

configuration variable core.quotePath (see git-config(1)).

CONFIGURATION
The command honors color.status (or status.color -- they mean the same thing and the latter is kept for

backward compatibility) and color.status.<slot> configuration variables to colorize its output.

If the config variable status.relativePaths is set to false, then all paths shown are relative to the

repository root, not to the current directory.

If status.submoduleSummary is set to a non zero number or true (identical to -1 or an unlimited

number), the submodule summary will be enabled for the long format and a summary of commits for

modified submodules will be shown (see --summary-limit option of git-submodule(1)). Please note that

the summary output from the status command will be suppressed for all submodules when

diff.ignoreSubmodules is set to all or only for those submodules where submodule.<name>.ignore=all.
To also view the summary for ignored submodules you can either use the --ignore-submodules=dirty

command line option or the git submodule summary command, which shows a similar output but does

not honor these settings.

BACKGROUND REFRESH
By default, git status will automatically refresh the index, updating the cached stat information from the

working tree and writing out the result. Writing out the updated index is an optimization that isn’t

strictly necessary (status computes the values for itself, but writing them out is just to save subsequent

programs from repeating our computation). When status is run in the background, the lock held during

the write may conflict with other simultaneous processes, causing them to fail. Scripts running status in

the background should consider using git --no-optional-locks status (see git(1) for details).

UNTRACKED FILES AND PERFORMANCE
git status can be very slow in large worktrees if/when it needs to search for untracked files and

GIT-STATUS(1) Git Manual GIT-STATUS(1)

Git 2.45.2 2024-05-30 GIT-STATUS(1)

directories. There are many configuration options available to speed this up by either avoiding the work

or making use of cached results from previous Git commands. There is no single optimum set of

settings right for everyone. We’ll list a summary of the relevant options to help you, but before going

into the list, you may want to run git status again, because your configuration may already be caching

git status results, so it could be faster on subsequent runs.

+o

--untracked-files=no flag or the status.showUntrackedFiles=no config (see above for both): indicate that

git status should not report untracked files. This is the fastest option. git status will not list the untracked

files, so you need to be careful to remember if you create any new files and manually git add them.

+o

(see git-config(1)): setting this variable to false disables the warning message given when enumerating

untracked files takes more than 2 seconds. In a large project, it may take longer and the user may have

already accepted the trade off (e.g. using "-uno" may not be an acceptable option for the user), in which

case, there is no point issuing the warning message, and in such a case, disabling the warning may be the

best.

+o

(see git-update-index(1)): enable the untracked cache feature and only search directories that have been

modified since the previous git status command. Git remembers the set of untracked files within each

directory and assumes that if a directory has not been modified, then the set of untracked files within has

not changed. This is much faster than enumerating the contents of every directory, but still not without

cost, because Git still has to search for the set of modified directories. The untracked cache is stored in the

.git/index file. The reduced cost of searching for untracked files is offset slightly by the increased size of

the index and the cost of keeping it up-to-date. That reduced search time is usually worth the additional

size.

+o

and core.fsmonitor=true or core.fsmonitor=<hook-command-pathname> (see git-update-index(1)): enable

both the untracked cache and FSMonitor features and only search directories that have been modified

since the previous git status command. This is faster than using just the untracked cache alone because Git

can also avoid searching for modified directories. Git only has to enumerate the exact set of directories

that have changed recently. While the FSMonitor feature can be enabled without the untracked cache, the

benefits are greatly reduced in that case.

Note that after you turn on the untracked cache and/or FSMonitor features it may take a few git status
commands for the various caches to warm up before you see improved command times. This is normal.

SEE ALSO

GIT-STATUS(1) Git Manual GIT-STATUS(1)

Git 2.45.2 2024-05-30 GIT-STATUS(1)

gitignore(5)

GIT
Part of the git(1) suite

GIT-STATUS(1) Git Manual GIT-STATUS(1)

Git 2.45.2 2024-05-30 GIT-STATUS(1)

