
NAME
git-update-index - Register file contents in the working tree to the index

SYNOPSIS
git update-index

[--add] [--remove | --force-remove] [--replace]

[--refresh] [-q] [--unmerged] [--ignore-missing]

[(--cacheinfo <mode>,<object>,<file>)...]

[--chmod=(+|-)x]

[--[no-]assume-unchanged]

[--[no-]skip-worktree]

[--[no-]ignore-skip-worktree-entries]

[--[no-]fsmonitor-valid]

[--ignore-submodules]

[--[no-]split-index]

[--[no-|test-|force-]untracked-cache]

[--[no-]fsmonitor]

[--really-refresh] [--unresolve] [--again | -g]

[--info-only] [--index-info]

[-z] [--stdin] [--index-version <n>]

[--verbose]

[--] [<file>...]

DESCRIPTION
Modifies the index. Each file mentioned is updated into the index and any unmerged or needs updating

state is cleared.

See also git-add(1) for a more user-friendly way to do some of the most common operations on the

index.

The way git update-index handles files it is told about can be modified using the various options:

OPTIONS
--add

If a specified file isn’t in the index already then it’s added. Default behaviour is to ignore new

files.

--remove

If a specified file is in the index but is missing then it’s removed. Default behavior is to ignore

GIT-UPDATE-INDEX(1) Git Manual GIT-UPDATE-INDEX(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-INDEX(1)

removed file.

--refresh

Looks at the current index and checks to see if merges or updates are needed by checking stat()

information.

-q

Quiet. If --refresh finds that the index needs an update, the default behavior is to error out. This

option makes git update-index continue anyway.

--ignore-submodules

Do not try to update submodules. This option is only respected when passed before --refresh.

--unmerged

If --refresh finds unmerged changes in the index, the default behavior is to error out. This option

makes git update-index continue anyway.

--ignore-missing

Ignores missing files during a --refresh

--cacheinfo <mode>,<object>,<path>, --cacheinfo <mode> <object> <path>

Directly insert the specified info into the index. For backward compatibility, you can also give

these three arguments as three separate parameters, but new users are encouraged to use a

single-parameter form.

--index-info

Read index information from stdin.

--chmod=(+|-)x

Set the execute permissions on the updated files.

--[no-]assume-unchanged

When this flag is specified, the object names recorded for the paths are not updated. Instead, this

option sets/unsets the "assume unchanged" bit for the paths. When the "assume unchanged" bit is

on, the user promises not to change the file and allows Git to assume that the working tree file

matches what is recorded in the index. If you want to change the working tree file, you need to

unset the bit to tell Git. This is sometimes helpful when working with a big project on a filesystem

that has very slow lstat(2) system call (e.g. cifs).

Git will fail (gracefully) in case it needs to modify this file in the index e.g. when merging in a

GIT-UPDATE-INDEX(1) Git Manual GIT-UPDATE-INDEX(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-INDEX(1)

commit; thus, in case the assumed-untracked file is changed upstream, you will need to handle the

situation manually.

--really-refresh

Like --refresh, but checks stat information unconditionally, without regard to the "assume

unchanged" setting.

--[no-]skip-worktree

When one of these flags is specified, the object name recorded for the paths are not updated.

Instead, these options set and unset the "skip-worktree" bit for the paths. See section

"Skip-worktree bit" below for more information.

--[no-]ignore-skip-worktree-entries

Do not remove skip-worktree (AKA "index-only") entries even when the --remove option was

specified.

--[no-]fsmonitor-valid

When one of these flags is specified, the object name recorded for the paths are not updated.

Instead, these options set and unset the "fsmonitor valid" bit for the paths. See section "File

System Monitor" below for more information.

-g, --again

Runs git update-index itself on the paths whose index entries are different from those from the

HEAD commit.

--unresolve

Restores the unmerged or needs updating state of a file during a merge if it was cleared by

accident.

--info-only

Do not create objects in the object database for all <file> arguments that follow this flag; just

insert their object IDs into the index.

--force-remove

Remove the file from the index even when the working directory still has such a file. (Implies

--remove.)

--replace

By default, when a file path exists in the index, git update-index refuses an attempt to add

path/file. Similarly if a file path/file exists, a file path cannot be added. With --replace flag,

GIT-UPDATE-INDEX(1) Git Manual GIT-UPDATE-INDEX(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-INDEX(1)

existing entries that conflict with the entry being added are automatically removed with warning

messages.

--stdin

Instead of taking list of paths from the command line, read list of paths from the standard input.

Paths are separated by LF (i.e. one path per line) by default.

--verbose

Report what is being added and removed from index.

--index-version <n>

Write the resulting index out in the named on-disk format version. Supported versions are 2, 3 and

4. The current default version is 2 or 3, depending on whether extra features are used, such as git
add -N.

Version 4 performs a simple pathname compression that reduces index size by 30%-50% on large

repositories, which results in faster load time. Version 4 is relatively young (first released in 1.8.0

in October 2012). Other Git implementations such as JGit and libgit2 may not support it yet.

-z

Only meaningful with --stdin or --index-info; paths are separated with NUL character instead of

LF.

--split-index, --no-split-index

Enable or disable split index mode. If split-index mode is already enabled and --split-index is

given again, all changes in $GIT_DIR/index are pushed back to the shared index file.

These options take effect whatever the value of the core.splitIndex configuration variable (see git-
config(1)). But a warning is emitted when the change goes against the configured value, as the

configured value will take effect next time the index is read and this will remove the intended

effect of the option.

--untracked-cache, --no-untracked-cache

Enable or disable untracked cache feature. Please use --test-untracked-cache before enabling it.

These options take effect whatever the value of the core.untrackedCache configuration variable

(see git-config(1)). But a warning is emitted when the change goes against the configured value,

as the configured value will take effect next time the index is read and this will remove the

intended effect of the option.

GIT-UPDATE-INDEX(1) Git Manual GIT-UPDATE-INDEX(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-INDEX(1)

--test-untracked-cache

Only perform tests on the working directory to make sure untracked cache can be used. You have

to manually enable untracked cache using --untracked-cache or --force-untracked-cache or the

core.untrackedCache configuration variable afterwards if you really want to use it. If a test fails

the exit code is 1 and a message explains what is not working as needed, otherwise the exit code is

0 and OK is printed.

--force-untracked-cache

Same as --untracked-cache. Provided for backwards compatibility with older versions of Git

where --untracked-cache used to imply --test-untracked-cache but this option would enable the

extension unconditionally.

--fsmonitor, --no-fsmonitor

Enable or disable files system monitor feature. These options take effect whatever the value of the

core.fsmonitor configuration variable (see git-config(1)). But a warning is emitted when the

change goes against the configured value, as the configured value will take effect next time the

index is read and this will remove the intended effect of the option.

--

Do not interpret any more arguments as options.

<file>

Files to act on. Note that files beginning with . are discarded. This includes ./file and dir/./file. If

you don’t want this, then use cleaner names. The same applies to directories ending / and paths

with //

USING --REFRESH
--refresh does not calculate a new sha1 file or bring the index up to date for mode/content changes. But

what it does do is to "re-match" the stat information of a file with the index, so that you can refresh the

index for a file that hasn’t been changed but where the stat entry is out of date.

For example, you’d want to do this after doing a git read-tree, to link up the stat index details with the

proper files.

USING --CACHEINFO OR --INFO-ONLY
--cacheinfo is used to register a file that is not in the current working directory. This is useful for

minimum-checkout merging.

To pretend you have a file at path with mode and sha1, say:

GIT-UPDATE-INDEX(1) Git Manual GIT-UPDATE-INDEX(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-INDEX(1)

$ git update-index --add --cacheinfo <mode>,<sha1>,<path>

--info-only is used to register files without placing them in the object database. This is useful for

status-only repositories.

Both --cacheinfo and --info-only behave similarly: the index is updated but the object database isn’t.

--cacheinfo is useful when the object is in the database but the file isn’t available locally. --info-only is

useful when the file is available, but you do not wish to update the object database.

USING --INDEX-INFO
--index-info is a more powerful mechanism that lets you feed multiple entry definitions from the

standard input, and designed specifically for scripts. It can take inputs of three formats:

1.

SP type SP sha1 TAB path

This format is to stuff git ls-tree output into the index.

2.

SP sha1 SP stage TAB path

This format is to put higher order stages into the index file and matches git ls-files --stage output.

3.

SP sha1 TAB path

This format is no longer produced by any Git command, but is and will continue to be supported by

update-index --index-info.

To place a higher stage entry to the index, the path should first be removed by feeding a mode=0 entry

for the path, and then feeding necessary input lines in the third format.

For example, starting with this index:

$ git ls-files -s

100644 8a1218a1024a212bb3db30becd860315f9f3ac52 0 frotz

you can feed the following input to --index-info:

GIT-UPDATE-INDEX(1) Git Manual GIT-UPDATE-INDEX(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-INDEX(1)

$ git update-index --index-info

0 00 frotz

100644 8a1218a1024a212bb3db30becd860315f9f3ac52 1 frotz

100755 8a1218a1024a212bb3db30becd860315f9f3ac52 2 frotz

The first line of the input feeds 0 as the mode to remove the path; the SHA-1 does not matter as long as

it is well formatted. Then the second and third line feeds stage 1 and stage 2 entries for that path. After

the above, we would end up with this:

$ git ls-files -s

100644 8a1218a1024a212bb3db30becd860315f9f3ac52 1 frotz

100755 8a1218a1024a212bb3db30becd860315f9f3ac52 2 frotz

USING "ASSUME UNCHANGED" BIT
Many operations in Git depend on your filesystem to have an efficient lstat(2) implementation, so that

st_mtime information for working tree files can be cheaply checked to see if the file contents have

changed from the version recorded in the index file. Unfortunately, some filesystems have inefficient

lstat(2). If your filesystem is one of them, you can set "assume unchanged" bit to paths you have not

changed to cause Git not to do this check. Note that setting this bit on a path does not mean Git will

check the contents of the file to see if it has changed -- it makes Git to omit any checking and assume it

has not changed. When you make changes to working tree files, you have to explicitly tell Git about it

by dropping "assume unchanged" bit, either before or after you modify them.

In order to set "assume unchanged" bit, use --assume-unchanged option. To unset, use

--no-assume-unchanged. To see which files have the "assume unchanged" bit set, use git ls-files -v (see

git-ls-files(1)).

The command looks at core.ignorestat configuration variable. When this is true, paths updated with git
update-index paths... and paths updated with other Git commands that update both index and working

tree (e.g. git apply --index, git checkout-index -u, and git read-tree -u) are automatically marked as

"assume unchanged". Note that "assume unchanged" bit is not set if git update-index --refresh finds the

working tree file matches the index (use git update-index --really-refresh if you want to mark them as

"assume unchanged").

Sometimes users confuse the assume-unchanged bit with the skip-worktree bit. See the final paragraph

in the "Skip-worktree bit" section below for an explanation of the differences.

EXAMPLES

GIT-UPDATE-INDEX(1) Git Manual GIT-UPDATE-INDEX(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-INDEX(1)

To update and refresh only the files already checked out:

$ git checkout-index -n -f -a && git update-index --ignore-missing --refresh

On an inefficient filesystem with core.ignorestat set

$ git update-index --really-refresh (1)
$ git update-index --no-assume-unchanged foo.c (2)
$ git diff --name-only (3)
$ edit foo.c

$ git diff --name-only (4)
M foo.c

$ git update-index foo.c (5)
$ git diff --name-only (6)
$ edit foo.c

$ git diff --name-only (7)
$ git update-index --no-assume-unchanged foo.c (8)
$ git diff --name-only (9)
M foo.c

1. forces lstat(2) to set "assume

unchanged" bits for paths that

match index.

2. mark the path to be

edited.

3. this does lstat(2) and finds index

matches the path.

4. this does lstat(2) and finds index

does not match the path.

5. registering the new version to

index sets "assume unchanged"

bit.

6. and it is assumed

unchanged.

7. even after you edit

it.

8. you can tell about the change

GIT-UPDATE-INDEX(1) Git Manual GIT-UPDATE-INDEX(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-INDEX(1)

after the fact.

9. now it checks with lstat(2) and

finds it has been changed.

SKIP-WORKTREE BIT
Skip-worktree bit can be defined in one (long) sentence: Tell git to avoid writing the file to the working

directory when reasonably possible, and treat the file as unchanged when it is not present in the

working directory.

Note that not all git commands will pay attention to this bit, and some only partially support it.

The update-index flags and the read-tree capabilities relating to the skip-worktree bit predated the

introduction of the git-sparse-checkout(1) command, which provides a much easier way to configure

and handle the skip-worktree bits. If you want to reduce your working tree to only deal with a subset of

the files in the repository, we strongly encourage the use of git-sparse-checkout(1) in preference to the

low-level update-index and read-tree primitives.

The primary purpose of the skip-worktree bit is to enable sparse checkouts, i.e. to have working

directories with only a subset of paths present. When the skip-worktree bit is set, Git commands (such

as switch, pull, merge) will avoid writing these files. However, these commands will sometimes write

these files anyway in important cases such as conflicts during a merge or rebase. Git commands will

also avoid treating the lack of such files as an intentional deletion; for example git add -u will not stage

a deletion for these files and git commit -a will not make a commit deleting them either.

Although this bit looks similar to assume-unchanged bit, its goal is different. The assume-unchanged

bit is for leaving the file in the working tree but having Git omit checking it for changes and presuming

that the file has not been changed (though if it can determine without stat’ing the file that it has

changed, it is free to record the changes). skip-worktree tells Git to ignore the absence of the file, avoid

updating it when possible with commands that normally update much of the working directory (e.g.

checkout, switch, pull, etc.), and not have its absence be recorded in commits. Note that in sparse

checkouts (setup by git sparse-checkout or by configuring core.sparseCheckout to true), if a file is

marked as skip-worktree in the index but is found in the working tree, Git will clear the skip-worktree

bit for that file.

SPLIT INDEX
This mode is designed for repositories with very large indexes, and aims at reducing the time it takes to

repeatedly write these indexes.

In this mode, the index is split into two files, $GIT_DIR/index and $GIT_DIR/sharedindex.<SHA-1>.

Changes are accumulated in $GIT_DIR/index, the split index, while the shared index file contains all

GIT-UPDATE-INDEX(1) Git Manual GIT-UPDATE-INDEX(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-INDEX(1)

index entries and stays unchanged.

All changes in the split index are pushed back to the shared index file when the number of entries in

the split index reaches a level specified by the splitIndex.maxPercentChange config variable (see git-
config(1)).

Each time a new shared index file is created, the old shared index files are deleted if their

modification time is older than what is specified by the splitIndex.sharedIndexExpire config variable

(see git-config(1)).

To avoid deleting a shared index file that is still used, its modification time is updated to the current

time every time a new split index based on the shared index file is either created or read from.

UNTRACKED CACHE
This cache is meant to speed up commands that involve determining untracked files such as git status.

This feature works by recording the mtime of the working tree directories and then omitting reading

directories and stat calls against files in those directories whose mtime hasn’t changed. For this to work

the underlying operating system and file system must change the st_mtime field of directories if files in

the directory are added, modified or deleted.

You can test whether the filesystem supports that with the --test-untracked-cache option. The

--untracked-cache option used to implicitly perform that test in older versions of Git, but that’s no

longer the case.

If you want to enable (or disable) this feature, it is easier to use the core.untrackedCache configuration

variable (see git-config(1)) than using the --untracked-cache option to git update-index in each

repository, especially if you want to do so across all repositories you use, because you can set the

configuration variable to true (or false) in your $HOME/.gitconfig just once and have it affect all

repositories you touch.

When the core.untrackedCache configuration variable is changed, the untracked cache is added to or

removed from the index the next time a command reads the index; while when

--[no-|force-]untracked-cache are used, the untracked cache is immediately added to or removed from

the index.

Before 2.17, the untracked cache had a bug where replacing a directory with a symlink to another

directory could cause it to incorrectly show files tracked by git as untracked. See the "status: add a

failing test showing a core.untrackedCache bug" commit to git.git. A workaround for that is (and this

might work for other undiscovered bugs in the future):

GIT-UPDATE-INDEX(1) Git Manual GIT-UPDATE-INDEX(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-INDEX(1)

$ git -c core.untrackedCache=false status

This bug has also been shown to affect non-symlink cases of replacing a directory with a file when it

comes to the internal structures of the untracked cache, but no case has been reported where this

resulted in wrong "git status" output.

There are also cases where existing indexes written by git versions before 2.17 will reference

directories that don’t exist anymore, potentially causing many "could not open directory" warnings to

be printed on "git status". These are new warnings for existing issues that were previously silently

discarded.

As with the bug described above the solution is to one-off do a "git status" run with

core.untrackedCache=false to flush out the leftover bad data.

FILE SYSTEM MONITOR
This feature is intended to speed up git operations for repos that have large working directories.

It enables git to work together with a file system monitor (see git-fsmonitor--daemon(1) and the

"fsmonitor-watchman" section of githooks(5)) that can inform it as to what files have been modified.

This enables git to avoid having to lstat() every file to find modified files.

When used in conjunction with the untracked cache, it can further improve performance by avoiding

the cost of scanning the entire working directory looking for new files.

If you want to enable (or disable) this feature, it is easier to use the core.fsmonitor configuration

variable (see git-config(1)) than using the --fsmonitor option to git update-index in each repository,

especially if you want to do so across all repositories you use, because you can set the configuration

variable in your $HOME/.gitconfig just once and have it affect all repositories you touch.

When the core.fsmonitor configuration variable is changed, the file system monitor is added to or

removed from the index the next time a command reads the index. When --[no-]fsmonitor are used, the

file system monitor is immediately added to or removed from the index.

CONFIGURATION
The command honors core.filemode configuration variable. If your repository is on a filesystem whose

executable bits are unreliable, this should be set to false (see git-config(1)). This causes the command

to ignore differences in file modes recorded in the index and the file mode on the filesystem if they

differ only on executable bit. On such an unfortunate filesystem, you may need to use git update-index

--chmod=.

GIT-UPDATE-INDEX(1) Git Manual GIT-UPDATE-INDEX(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-INDEX(1)

Quite similarly, if core.symlinks configuration variable is set to false (see git-config(1)), symbolic links

are checked out as plain files, and this command does not modify a recorded file mode from symbolic

link to regular file.

The command looks at core.ignorestat configuration variable. See Using "assume unchanged" bit

section above.

The command also looks at core.trustctime configuration variable. It can be useful when the inode

change time is regularly modified by something outside Git (file system crawlers and backup systems

use ctime for marking files processed) (see git-config(1)).

The untracked cache extension can be enabled by the core.untrackedCache configuration variable (see

git-config(1)).

NOTES
Users often try to use the assume-unchanged and skip-worktree bits to tell Git to ignore changes to files

that are tracked. This does not work as expected, since Git may still check working tree files against the

index when performing certain operations. In general, Git does not provide a way to ignore changes to

tracked files, so alternate solutions are recommended.

For example, if the file you want to change is some sort of config file, the repository can include a

sample config file that can then be copied into the ignored name and modified. The repository can even

include a script to treat the sample file as a template, modifying and copying it automatically.

SEE ALSO
git-config(1), git-add(1), git-ls-files(1)

GIT
Part of the git(1) suite

GIT-UPDATE-INDEX(1) Git Manual GIT-UPDATE-INDEX(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-INDEX(1)

