
NAME
git-update-ref - Update the object name stored in a ref safely

SYNOPSIS
git update-ref [-m <reason>] [--no-deref] (-d <ref> [<oldvalue>] | [--create-reflog] <ref> <newvalue> [<oldvalue>] | --stdin

DESCRIPTION
Given two arguments, stores the <newvalue> in the <ref>, possibly dereferencing the symbolic refs.

E.g. git update-ref HEAD <newvalue> updates the current branch head to the new object.

Given three arguments, stores the <newvalue> in the <ref>, possibly dereferencing the symbolic refs,

after verifying that the current value of the <ref> matches <oldvalue>. E.g. git update-ref
refs/heads/master <newvalue> <oldvalue> updates the master branch head to <newvalue> only if its

current value is <oldvalue>. You can specify 40 "0" or an empty string as <oldvalue> to make sure that

the ref you are creating does not exist.

It also allows a "ref" file to be a symbolic pointer to another ref file by starting with the four-byte

header sequence of "ref:".

More importantly, it allows the update of a ref file to follow these symbolic pointers, whether they are

symlinks or these "regular file symbolic refs". It follows real symlinks only if they start with "refs/":

otherwise it will just try to read them and update them as a regular file (i.e. it will allow the filesystem

to follow them, but will overwrite such a symlink to somewhere else with a regular filename).

If --no-deref is given, <ref> itself is overwritten, rather than the result of following the symbolic

pointers.

In general, using

git update-ref HEAD "$head"

should be a lot safer than doing

echo "$head" > "$GIT_DIR/HEAD"

both from a symlink following standpoint and an error checking standpoint. The "refs/" rule for

symlinks means that symlinks that point to "outside" the tree are safe: they’ll be followed for reading

but not for writing (so we’ll never write through a ref symlink to some other tree, if you have copied a

whole archive by creating a symlink tree).

GIT-UPDATE-REF(1) Git Manual GIT-UPDATE-REF(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-REF(1)



With -d flag, it deletes the named <ref> after verifying it still contains <oldvalue>.

With --stdin, update-ref reads instructions from standard input and performs all modifications together.

Specify commands of the form:

update SP <ref> SP <newvalue> [SP <oldvalue>] LF

create SP <ref> SP <newvalue> LF

delete SP <ref> [SP <oldvalue>] LF

verify SP <ref> [SP <oldvalue>] LF

option SP <opt> LF

start LF

prepare LF

commit LF

abort LF

With --create-reflog, update-ref will create a reflog for each ref even if one would not ordinarily be

created.

Quote fields containing whitespace as if they were strings in C source code; i.e., surrounded by

double-quotes and with backslash escapes. Use 40 "0" characters or the empty string to specify a zero

value. To specify a missing value, omit the value and its preceding SP entirely.

Alternatively, use -z to specify in NUL-terminated format, without quoting:

update SP <ref> NUL <newvalue> NUL [<oldvalue>] NUL

create SP <ref> NUL <newvalue> NUL

delete SP <ref> NUL [<oldvalue>] NUL

verify SP <ref> NUL [<oldvalue>] NUL

option SP <opt> NUL

start NUL

prepare NUL

commit NUL

abort NUL

In this format, use 40 "0" to specify a zero value, and use the empty string to specify a missing value.

In either format, values can be specified in any form that Git recognizes as an object name. Commands

in any other format or a repeated <ref> produce an error. Command meanings are:

update

GIT-UPDATE-REF(1) Git Manual GIT-UPDATE-REF(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-REF(1)



Set <ref> to <newvalue> after verifying <oldvalue>, if given. Specify a zero <newvalue> to

ensure the ref does not exist after the update and/or a zero <oldvalue> to make sure the ref does

not exist before the update.

create

Create <ref> with <newvalue> after verifying it does not exist. The given <newvalue> may not be

zero.

delete

Delete <ref> after verifying it exists with <oldvalue>, if given. If given, <oldvalue> may not be

zero.

verify

Verify <ref> against <oldvalue> but do not change it. If <oldvalue> is zero or missing, the ref

must not exist.

option

Modify behavior of the next command naming a <ref>. The only valid option is no-deref to avoid

dereferencing a symbolic ref.

start

Start a transaction. In contrast to a non-transactional session, a transaction will automatically abort

if the session ends without an explicit commit. This command may create a new empty transaction

when the current one has been committed or aborted already.

prepare

Prepare to commit the transaction. This will create lock files for all queued reference updates. If

one reference could not be locked, the transaction will be aborted.

commit

Commit all reference updates queued for the transaction, ending the transaction.

abort

Abort the transaction, releasing all locks if the transaction is in prepared state.

If all <ref>s can be locked with matching <oldvalue>s simultaneously, all modifications are performed.

Otherwise, no modifications are performed. Note that while each individual <ref> is updated or deleted

atomically, a concurrent reader may still see a subset of the modifications.

LOGGING UPDATES

GIT-UPDATE-REF(1) Git Manual GIT-UPDATE-REF(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-REF(1)



If config parameter "core.logAllRefUpdates" is true and the ref is one under "refs/heads/",

"refs/remotes/", "refs/notes/", or a pseudoref like HEAD or ORIG_HEAD; or the file

"$GIT_DIR/logs/<ref>" exists then git update-ref will append a line to the log file

"$GIT_DIR/logs/<ref>" (dereferencing all symbolic refs before creating the log name) describing the

change in ref value. Log lines are formatted as:

oldsha1 SP newsha1 SP committer LF

Where "oldsha1" is the 40 character hexadecimal value previously stored in <ref>, "newsha1" is the 40

character hexadecimal value of <newvalue> and "committer" is the committer’s name, email address

and date in the standard Git committer ident format.

Optionally with -m:

oldsha1 SP newsha1 SP committer TAB message LF

Where all fields are as described above and "message" is the value supplied to the -m option.

An update will fail (without changing <ref>) if the current user is unable to create a new log file,

append to the existing log file or does not have committer information available.

GIT
Part of the git(1) suite

GIT-UPDATE-REF(1) Git Manual GIT-UPDATE-REF(1)

Git 2.42.0 2023-08-21 GIT-UPDATE-REF(1)


