
NAME
git-worktree - Manage multiple working trees

SYNOPSIS
git worktree add [-f] [--detach] [--checkout] [--lock [--reason <string>]]

[--orphan] [(-b | -B) <new-branch>] <path> [<commit-ish>]

git worktree list [-v | --porcelain [-z]]

git worktree lock [--reason <string>] <worktree>

git worktree move <worktree> <new-path>

git worktree prune [-n] [-v] [--expire <expire>]

git worktree remove [-f] <worktree>

git worktree repair [<path>...]

git worktree unlock <worktree>

DESCRIPTION
Manage multiple working trees attached to the same repository.

A git repository can support multiple working trees, allowing you to check out more than one branch at

a time. With git worktree add a new working tree is associated with the repository, along with

additional metadata that differentiates that working tree from others in the same repository. The

working tree, along with this metadata, is called a "worktree".

This new worktree is called a "linked worktree" as opposed to the "main worktree" prepared by git-
init(1) or git-clone(1). A repository has one main worktree (if it’s not a bare repository) and zero or

more linked worktrees. When you are done with a linked worktree, remove it with git worktree remove.

In its simplest form, git worktree add <path> automatically creates a new branch whose name is the

final component of <path>, which is convenient if you plan to work on a new topic. For instance, git
worktree add ../hotfix creates new branch hotfix and checks it out at path ../hotfix. To instead work on

an existing branch in a new worktree, use git worktree add <path> <branch>. On the other hand, if you

just plan to make some experimental changes or do testing without disturbing existing development, it

is often convenient to create a throwaway worktree not associated with any branch. For instance, git
worktree add -d <path> creates a new worktree with a detached HEAD at the same commit as the

current branch.

If a working tree is deleted without using git worktree remove, then its associated administrative files,

which reside in the repository (see "DETAILS" below), will eventually be removed automatically (see

gc.worktreePruneExpire in git-config(1)), or you can run git worktree prune in the main or any linked

worktree to clean up any stale administrative files.

GIT-WORKTREE(1) Git Manual GIT-WORKTREE(1)

Git 2.42.0 2023-08-21 GIT-WORKTREE(1)

If the working tree for a linked worktree is stored on a portable device or network share which is not

always mounted, you can prevent its administrative files from being pruned by issuing the git worktree
lock command, optionally specifying --reason to explain why the worktree is locked.

COMMANDS
add <path> [<commit-ish>]

Create a worktree at <path> and checkout <commit-ish> into it. The new worktree is linked to the

current repository, sharing everything except per-worktree files such as HEAD, index, etc. As a

convenience, <commit-ish> may be a bare "-", which is synonymous with @{-1}.

If <commit-ish> is a branch name (call it <branch>) and is not found, and neither -b nor -B nor

--detach are used, but there does exist a tracking branch in exactly one remote (call it <remote>)

with a matching name, treat as equivalent to:

$ git worktree add --track -b <branch> <path> <remote>/<branch>

If the branch exists in multiple remotes and one of them is named by the checkout.defaultRemote
configuration variable, we’ll use that one for the purposes of disambiguation, even if the <branch>
isn’t unique across all remotes. Set it to e.g. checkout.defaultRemote=origin to always checkout

remote branches from there if <branch> is ambiguous but exists on the origin remote. See also

checkout.defaultRemote in git-config(1).

If <commit-ish> is omitted and neither -b nor -B nor --detach used, then, as a convenience, the

new worktree is associated with a branch (call it <branch>) named after $(basename <path>). If

<branch> doesn’t exist, a new branch based on HEAD is automatically created as if -b <branch>
was given. If <branch> does exist, it will be checked out in the new worktree, if it’s not checked

out anywhere else, otherwise the command will refuse to create the worktree (unless --force is

used).

If <commit-ish> is omitted, neither --detach, or --orphan is used, and there are no valid local

branches (or remote branches if --guess-remote is specified) then, as a convenience, the new

worktree is associated with a new orphan branch named <branch> (after $(basename <path>) if

neither -b or -B is used) as if --orphan was passed to the command. In the event the repository has

a remote and --guess-remote is used, but no remote or local branches exist, then the command

fails with a warning reminding the user to fetch from their remote first (or override by using

-f/--force).

list

List details of each worktree. The main worktree is listed first, followed by each of the linked

worktrees. The output details include whether the worktree is bare, the revision currently checked

GIT-WORKTREE(1) Git Manual GIT-WORKTREE(1)

Git 2.42.0 2023-08-21 GIT-WORKTREE(1)

out, the branch currently checked out (or "detached HEAD" if none), "locked" if the worktree is

locked, "prunable" if the worktree can be pruned by the prune command.

lock

If a worktree is on a portable device or network share which is not always mounted, lock it to

prevent its administrative files from being pruned automatically. This also prevents it from being

moved or deleted. Optionally, specify a reason for the lock with --reason.

move

Move a worktree to a new location. Note that the main worktree or linked worktrees containing

submodules cannot be moved with this command. (The git worktree repair command, however,

can reestablish the connection with linked worktrees if you move the main worktree manually.)

prune

Prune worktree information in $GIT_DIR/worktrees.

remove

Remove a worktree. Only clean worktrees (no untracked files and no modification in tracked files)

can be removed. Unclean worktrees or ones with submodules can be removed with --force. The

main worktree cannot be removed.

repair [<path>...]

Repair worktree administrative files, if possible, if they have become corrupted or outdated due to

external factors.

For instance, if the main worktree (or bare repository) is moved, linked worktrees will be unable

to locate it. Running repair in the main worktree will reestablish the connection from linked

worktrees back to the main worktree.

Similarly, if the working tree for a linked worktree is moved without using git worktree move, the

main worktree (or bare repository) will be unable to locate it. Running repair within the

recently-moved worktree will reestablish the connection. If multiple linked worktrees are moved,

running repair from any worktree with each tree’s new <path> as an argument, will reestablish the

connection to all the specified paths.

If both the main worktree and linked worktrees have been moved manually, then running repair in

the main worktree and specifying the new <path> of each linked worktree will reestablish all

connections in both directions.

unlock

GIT-WORKTREE(1) Git Manual GIT-WORKTREE(1)

Git 2.42.0 2023-08-21 GIT-WORKTREE(1)

Unlock a worktree, allowing it to be pruned, moved or deleted.

OPTIONS
-f, --force

By default, add refuses to create a new worktree when <commit-ish> is a branch name and is

already checked out by another worktree, or if <path> is already assigned to some worktree but is

missing (for instance, if <path> was deleted manually). This option overrides these safeguards. To

add a missing but locked worktree path, specify --force twice.

move refuses to move a locked worktree unless --force is specified twice. If the destination is

already assigned to some other worktree but is missing (for instance, if <new-path> was deleted

manually), then --force allows the move to proceed; use --force twice if the destination is locked.

remove refuses to remove an unclean worktree unless --force is used. To remove a locked

worktree, specify --force twice.

-b <new-branch>, -B <new-branch>

With add, create a new branch named <new-branch> starting at <commit-ish>, and check out

<new-branch> into the new worktree. If <commit-ish> is omitted, it defaults to HEAD. By

default, -b refuses to create a new branch if it already exists. -B overrides this safeguard, resetting

<new-branch> to <commit-ish>.

-d, --detach

With add, detach HEAD in the new worktree. See "DETACHED HEAD" in git-checkout(1).

--[no-]checkout

By default, add checks out <commit-ish>, however, --no-checkout can be used to suppress

checkout in order to make customizations, such as configuring sparse-checkout. See "Sparse

checkout" in git-read-tree(1).

--[no-]guess-remote

With worktree add <path>, without <commit-ish>, instead of creating a new branch from HEAD,

if there exists a tracking branch in exactly one remote matching the basename of <path>, base the

new branch on the remote-tracking branch, and mark the remote-tracking branch as "upstream"

from the new branch.

This can also be set up as the default behaviour by using the worktree.guessRemote config option.

--[no-]track

When creating a new branch, if <commit-ish> is a branch, mark it as "upstream" from the new

GIT-WORKTREE(1) Git Manual GIT-WORKTREE(1)

Git 2.42.0 2023-08-21 GIT-WORKTREE(1)

branch. This is the default if <commit-ish> is a remote-tracking branch. See --track in git-
branch(1) for details.

--lock

Keep the worktree locked after creation. This is the equivalent of git worktree lock after git
worktree add, but without a race condition.

-n, --dry-run

With prune, do not remove anything; just report what it would remove.

--orphan

With add, make the new worktree and index empty, associating the worktree with a new

orphan/unborn branch named <new-branch>.

--porcelain

With list, output in an easy-to-parse format for scripts. This format will remain stable across Git

versions and regardless of user configuration. It is recommended to combine this with -z. See

below for details.

-z

Terminate each line with a NUL rather than a newline when --porcelain is specified with list. This

makes it possible to parse the output when a worktree path contains a newline character.

-q, --quiet

With add, suppress feedback messages.

-v, --verbose

With prune, report all removals.

With list, output additional information about worktrees (see below).

--expire <time>

With prune, only expire unused worktrees older than <time>.

With list, annotate missing worktrees as prunable if they are older than <time>.

--reason <string>

With lock or with add --lock, an explanation why the worktree is locked.

<worktree>

GIT-WORKTREE(1) Git Manual GIT-WORKTREE(1)

Git 2.42.0 2023-08-21 GIT-WORKTREE(1)

Worktrees can be identified by path, either relative or absolute.

If the last path components in the worktree’s path is unique among worktrees, it can be used to

identify a worktree. For example if you only have two worktrees, at /abc/def/ghi and /abc/def/ggg,

then ghi or def/ghi is enough to point to the former worktree.

REFS
When using multiple worktrees, some refs are shared between all worktrees, but others are specific to

an individual worktree. One example is HEAD, which is different for each worktree. This section is

about the sharing rules and how to access refs of one worktree from another.

In general, all pseudo refs are per-worktree and all refs starting with refs/ are shared. Pseudo refs are

ones like HEAD which are directly under $GIT_DIR instead of inside $GIT_DIR/refs. There are

exceptions, however: refs inside refs/bisect and refs/worktree are not shared.

Refs that are per-worktree can still be accessed from another worktree via two special paths,

main-worktree and worktrees. The former gives access to per-worktree refs of the main worktree, while

the latter to all linked worktrees.

For example, main-worktree/HEAD or main-worktree/refs/bisect/good resolve to the same value as the

main worktree’s HEAD and refs/bisect/good respectively. Similarly, worktrees/foo/HEAD or

worktrees/bar/refs/bisect/bad are the same as $GIT_COMMON_DIR/worktrees/foo/HEAD and

$GIT_COMMON_DIR/worktrees/bar/refs/bisect/bad.

To access refs, it’s best not to look inside $GIT_DIR directly. Instead use commands such as git-rev-
parse(1) or git-update-ref(1) which will handle refs correctly.

CONFIGURATION FILE
By default, the repository config file is shared across all worktrees. If the config variables core.bare or

core.worktree are present in the common config file and extensions.worktreeConfig is disabled, then

they will be applied to the main worktree only.

In order to have worktree-specific configuration, you can turn on the worktreeConfig extension, e.g.:

$ git config extensions.worktreeConfig true

In this mode, specific configuration stays in the path pointed by git rev-parse --git-path
config.worktree. You can add or update configuration in this file with git config --worktree. Older Git

versions will refuse to access repositories with this extension.

GIT-WORKTREE(1) Git Manual GIT-WORKTREE(1)

Git 2.42.0 2023-08-21 GIT-WORKTREE(1)

Note that in this file, the exception for core.bare and core.worktree is gone. If they exist in

$GIT_DIR/config, you must move them to the config.worktree of the main worktree. You may also

take this opportunity to review and move other configuration that you do not want to share to all

worktrees:

+o

should never be shared.

+o

should not be shared if the value is core.bare=true.

+o

should not be shared, unless you are sure you always use sparse checkout for all worktrees.

See the documentation of extensions.worktreeConfig in git-config(1) for more details.

DETAILS
Each linked worktree has a private sub-directory in the repository’s $GIT_DIR/worktrees directory.

The private sub-directory’s name is usually the base name of the linked worktree’s path, possibly

appended with a number to make it unique. For example, when $GIT_DIR=/path/main/.git the

command git worktree add /path/other/test-next next creates the linked worktree in /path/other/test-next
and also creates a $GIT_DIR/worktrees/test-next directory (or $GIT_DIR/worktrees/test-next1 if

test-next is already taken).

Within a linked worktree, $GIT_DIR is set to point to this private directory (e.g.

/path/main/.git/worktrees/test-next in the example) and $GIT_COMMON_DIR is set to point back to

the main worktree’s $GIT_DIR (e.g. /path/main/.git). These settings are made in a .git file located at

the top directory of the linked worktree.

Path resolution via git rev-parse --git-path uses either $GIT_DIR or $GIT_COMMON_DIR depending

on the path. For example, in the linked worktree git rev-parse --git-path HEAD returns

/path/main/.git/worktrees/test-next/HEAD (not /path/other/test-next/.git/HEAD or

/path/main/.git/HEAD) while git rev-parse --git-path refs/heads/master uses $GIT_COMMON_DIR
and returns /path/main/.git/refs/heads/master, since refs are shared across all worktrees, except

refs/bisect and refs/worktree.

See gitrepository-layout(5) for more information. The rule of thumb is do not make any assumption

about whether a path belongs to $GIT_DIR or $GIT_COMMON_DIR when you need to directly

access something inside $GIT_DIR. Use git rev-parse --git-path to get the final path.

GIT-WORKTREE(1) Git Manual GIT-WORKTREE(1)

Git 2.42.0 2023-08-21 GIT-WORKTREE(1)

If you manually move a linked worktree, you need to update the gitdir file in the

entry’s directory. For example, if a linked worktree is moved to

/newpath/test-next and its .git file points to /path/main/.git/worktrees/test-next,
then update /path/main/.git/worktrees/test-next/gitdir to reference

/newpath/test-next instead. Better yet, run git worktree repair to reestablish the

connection automatically.

To prevent a $GIT_DIR/worktrees entry from being pruned (which can be

useful in some situations, such as when the entry’s worktree is stored on a

portable device), use the git worktree lock command, which adds a file named

locked to the entry’s directory. The file contains the reason in plain text. For

example, if a linked worktree’s .git file points to

/path/main/.git/worktrees/test-next then a file named

/path/main/.git/worktrees/test-next/locked will prevent the test-next entry from

being pruned. See gitrepository-layout(5) for details.

When extensions.worktreeConfig is enabled, the config file

.git/worktrees/<id>/config.worktree is read after .git/config is.

LIST OUTPUT FORMAT
The worktree list command has two output formats. The default format shows the details on a single

line with columns. For example:

$ git worktree list

/path/to/bare-source (bare)

/path/to/linked-worktree abcd1234 [master]

/path/to/other-linked-worktree 1234abc (detached HEAD)

The command also shows annotations for each worktree, according to its state. These annotations are:

+o

if the worktree is locked.

+o

if the worktree can be pruned via git worktree prune.

$ git worktree list

/path/to/linked-worktree abcd1234 [master]

/path/to/locked-worktree acbd5678 (brancha) locked

GIT-WORKTREE(1) Git Manual GIT-WORKTREE(1)

Git 2.42.0 2023-08-21 GIT-WORKTREE(1)

/path/to/prunable-worktree 5678abc (detached HEAD) prunable

For these annotations, a reason might also be available and this can be seen using the verbose mode.

The annotation is then moved to the next line indented followed by the additional information.

$ git worktree list --verbose

/path/to/linked-worktree abcd1234 [master]

/path/to/locked-worktree-no-reason abcd5678 (detached HEAD) locked

/path/to/locked-worktree-with-reason 1234abcd (brancha)

locked: worktree path is mounted on a portable device

/path/to/prunable-worktree 5678abc1 (detached HEAD)

prunable: gitdir file points to non-existent location

Note that the annotation is moved to the next line if the additional information is available, otherwise it

stays on the same line as the worktree itself.

Porcelain Format
The porcelain format has a line per attribute. If -z is given then the lines are terminated with NUL

rather than a newline. Attributes are listed with a label and value separated by a single space. Boolean

attributes (like bare and detached) are listed as a label only, and are present only if the value is true.

Some attributes (like locked) can be listed as a label only or with a value depending upon whether a

reason is available. The first attribute of a worktree is always worktree, an empty line indicates the end

of the record. For example:

$ git worktree list --porcelain

worktree /path/to/bare-source

bare

worktree /path/to/linked-worktree

HEAD abcd1234abcd1234abcd1234abcd1234abcd1234

branch refs/heads/master

worktree /path/to/other-linked-worktree

HEAD 1234abc1234abc1234abc1234abc1234abc1234a

detached

worktree /path/to/linked-worktree-locked-no-reason

HEAD 5678abc5678abc5678abc5678abc5678abc5678c

GIT-WORKTREE(1) Git Manual GIT-WORKTREE(1)

Git 2.42.0 2023-08-21 GIT-WORKTREE(1)

branch refs/heads/locked-no-reason

locked

worktree /path/to/linked-worktree-locked-with-reason

HEAD 3456def3456def3456def3456def3456def3456b

branch refs/heads/locked-with-reason

locked reason why is locked

worktree /path/to/linked-worktree-prunable

HEAD 1233def1234def1234def1234def1234def1234b

detached

prunable gitdir file points to non-existent location

Unless -z is used any "unusual" characters in the lock reason such as newlines are escaped and the

entire reason is quoted as explained for the configuration variable core.quotePath (see git-config(1)).

For Example:

$ git worktree list --porcelain

...

locked "reason\nwhy is locked"

...

EXAMPLES
You are in the middle of a refactoring session and your boss comes in and demands that you fix

something immediately. You might typically use git-stash(1) to store your changes away temporarily,

however, your working tree is in such a state of disarray (with new, moved, and removed files, and

other bits and pieces strewn around) that you don’t want to risk disturbing any of it. Instead, you create

a temporary linked worktree to make the emergency fix, remove it when done, and then resume your

earlier refactoring session.

$ git worktree add -b emergency-fix ../temp master

$ pushd ../temp

... hack hack hack ...

$ git commit -a -m ’emergency fix for boss’

$ popd

$ git worktree remove ../temp

GIT-WORKTREE(1) Git Manual GIT-WORKTREE(1)

Git 2.42.0 2023-08-21 GIT-WORKTREE(1)

BUGS
Multiple checkout in general is still experimental, and the support for submodules is incomplete. It is

NOT recommended to make multiple checkouts of a superproject.

GIT
Part of the git(1) suite

GIT-WORKTREE(1) Git Manual GIT-WORKTREE(1)

Git 2.42.0 2023-08-21 GIT-WORKTREE(1)

