
NAME
giteveryday - A useful minimum set of commands for Everyday Git

SYNOPSIS
Everyday Git With 20 Commands Or So

DESCRIPTION
Git users can broadly be grouped into four categories for the purposes of describing here a small set of

useful commands for everyday Git.

+o

Developer (Standalone) commands are essential for anybody who makes a commit, even for somebody

who works alone.

+o

you work with other people, you will need commands listed in the Individual Developer (Participant)

section as well.

+o

who play the Integrator role need to learn some more commands in addition to the above.

+o

Administration commands are for system administrators who are responsible for the care and feeding of

Git repositories.

INDIVIDUAL DEVELOPER (STANDALONE)
A standalone individual developer does not exchange patches with other people, and works alone in a

single repository, using the following commands.

+o

init(1) to create a new repository.

+o

log(1) to see what happened.

+o

switch(1) and git-branch(1) to switch branches.

+o

add(1) to manage the index file.

GITEVERYDAY(7) Git Manual GITEVERYDAY(7)

Git 2.45.2 2024-05-30 GITEVERYDAY(7)

+o

diff(1) and git-status(1) to see what you are in the middle of doing.

+o

commit(1) to advance the current branch.

+o

restore(1) to undo changes.

+o

merge(1) to merge between local branches.

+o

rebase(1) to maintain topic branches.

+o

tag(1) to mark a known point.

Examples
Use a tarball as a starting point for a new repository.

$ tar zxf frotz.tar.gz

$ cd frotz

$ git init

$ git add . (1)
$ git commit -m "import of frotz source tree."

$ git tag v2.43 (2)

1. add everything under the current

directory.

2. make a lightweight, unannotated

tag.

Create a topic branch and develop.

$ git switch -c alsa-audio (1)
$ edit/compile/test

$ git restore curses/ux_audio_oss.c (2)
$ git add curses/ux_audio_alsa.c (3)

GITEVERYDAY(7) Git Manual GITEVERYDAY(7)

Git 2.45.2 2024-05-30 GITEVERYDAY(7)

$ edit/compile/test

$ git diff HEAD (4)
$ git commit -a -s (5)
$ edit/compile/test

$ git diff HEAD^ (6)
$ git commit -a --amend (7)
$ git switch master (8)
$ git merge alsa-audio (9)
$ git log --since=’3 days ago’ (10)
$ git log v2.43.. curses/ (11)

1. create a new topic

branch.

2. revert your botched changes in

curses/ux_audio_oss.c.

3. you need to tell Git if you added a

new file; removal and modification

will be caught if you do git commit
-a later.

4. to see what changes you are

committing.

5. commit everything, as you have

tested, with your sign-off.

6. look at all your changes including

the previous commit.

7. amend the previous commit, adding

all your new changes, using your

original message.

8. switch to the master

branch.

9. merge a topic branch into your

master branch.

10. review commit logs; other forms to

limit output can be combined and

include -10 (to show up to 10

commits), --until=2005-12-10, etc.

11. view only the changes that touch

what’s in curses/ directory, since

v2.43 tag.

GITEVERYDAY(7) Git Manual GITEVERYDAY(7)

Git 2.45.2 2024-05-30 GITEVERYDAY(7)

INDIVIDUAL DEVELOPER (PARTICIPANT)
A developer working as a participant in a group project needs to learn how to communicate with

others, and uses these commands in addition to the ones needed by a standalone developer.

+o

clone(1) from the upstream to prime your local repository.

+o

pull(1) and git-fetch(1) from "origin" to keep up-to-date with the upstream.

+o

push(1) to shared repository, if you adopt CVS style shared repository workflow.

+o

format-patch(1) to prepare e-mail submission, if you adopt Linux kernel-style public forum workflow.

+o

send-email(1) to send your e-mail submission without corruption by your MUA.

+o

request-pull(1) to create a summary of changes for your upstream to pull.

Examples
Clone the upstream and work on it. Feed changes to upstream.

$ git clone git://git.kernel.org/pub/scm/.../torvalds/linux-2.6 my2.6

$ cd my2.6

$ git switch -c mine master (1)
$ edit/compile/test; git commit -a -s (2)
$ git format-patch master (3)
$ git send-email --to="person <email@example.com>" 00*.patch (4)
$ git switch master (5)
$ git pull (6)
$ git log -p ORIG_HEAD.. arch/i386 include/asm-i386 (7)
$ git ls-remote --heads http://git.kernel.org/.../jgarzik/libata-dev.git (8)
$ git pull git://git.kernel.org/pub/.../jgarzik/libata-dev.git ALL (9)
$ git reset --hard ORIG_HEAD (10)
$ git gc (11)

GITEVERYDAY(7) Git Manual GITEVERYDAY(7)

Git 2.45.2 2024-05-30 GITEVERYDAY(7)

1. checkout a new branch mine from

master.

2. repeat as

needed.

3. extract patches from your branch,

relative to master,

4. and email

them.

5. return to master, ready to see

what’s new

6. git pull fetches from origin by

default and merges into the current

branch.

7. immediately after pulling, look at

the changes done upstream since

last time we checked, only in the

area we are interested in.

8. check the branch names in an

external repository (if not known).

9. fetch from a specific branch ALL
from a specific repository and

merge it.

10. revert the

pull.

11. garbage collect leftover objects

from reverted pull.

Push into another repository.

satellite$ git clone mothership:frotz frotz (1)
satellite$ cd frotz

satellite$ git config --get-regexp ’^(remote|branch)\.’ (2)
remote.origin.url mothership:frotz

remote.origin.fetch refs/heads/*:refs/remotes/origin/*

branch.master.remote origin

branch.master.merge refs/heads/master

satellite$ git config remote.origin.push \

+refs/heads/*:refs/remotes/satellite/* (3)
satellite$ edit/compile/test/commit

satellite$ git push origin (4)

GITEVERYDAY(7) Git Manual GITEVERYDAY(7)

Git 2.45.2 2024-05-30 GITEVERYDAY(7)

mothership$ cd frotz

mothership$ git switch master

mothership$ git merge satellite/master (5)

1. mothership machine has a frotz

repository under your home

directory; clone from it to start a

repository on the satellite machine.

2. clone sets these configuration

variables by default. It arranges git
pull to fetch and store the branches

of mothership machine to local

remotes/origin/* remote-tracking

branches.

3. arrange git push to push all local

branches to their corresponding

branch of the mothership machine.

4. push will stash all our work away

on remotes/satellite/*
remote-tracking branches on the

mothership machine. You could

use this as a back-up method.

Likewise, you can pretend that

mothership "fetched" from you

(useful when access is one sided).

5. on mothership machine, merge the

work done on the satellite machine

into the master branch.

Branch off of a specific tag.

$ git switch -c private2.6.14 v2.6.14 (1)
$ edit/compile/test; git commit -a

$ git checkout master

$ git cherry-pick v2.6.14..private2.6.14 (2)

1. create a private branch based on a

well known (but somewhat behind)

GITEVERYDAY(7) Git Manual GITEVERYDAY(7)

Git 2.45.2 2024-05-30 GITEVERYDAY(7)

tag.

2. forward port all changes in

private2.6.14 branch to master
branch without a formal "merging".

Or longhand git format-patch -k
-m --stdout v2.6.14..private2.6.14 |
git am -3 -k

An alternate participant submission mechanism is using the git request-pull or pull-request mechanisms

(e.g. as used on GitHub (www.github.com) to notify your upstream of your contribution.

INTEGRATOR
A fairly central person acting as the integrator in a group project receives changes made by others,

reviews and integrates them and publishes the result for others to use, using these commands in

addition to the ones needed by participants.

This section can also be used by those who respond to git request-pull or pull-request on GitHub

(www.github.com) to integrate the work of others into their history. A sub-area lieutenant for a

repository will act both as a participant and as an integrator.

+o

am(1) to apply patches e-mailed in from your contributors.

+o

pull(1) to merge from your trusted lieutenants.

+o

format-patch(1) to prepare and send suggested alternative to contributors.

+o

revert(1) to undo botched commits.

+o

push(1) to publish the bleeding edge.

Examples
A typical integrator’s Git day.

$ git status (1)
$ git branch --no-merged master (2)

GITEVERYDAY(7) Git Manual GITEVERYDAY(7)

Git 2.45.2 2024-05-30 GITEVERYDAY(7)

$ mailx (3)
& s 2 3 4 5 ./+to-apply

& s 7 8 ./+hold-linus

& q

$ git switch -c topic/one master

$ git am -3 -i -s ./+to-apply (4)
$ compile/test

$ git switch -c hold/linus && git am -3 -i -s ./+hold-linus (5)
$ git switch topic/one && git rebase master (6)
$ git switch -C seen next (7)
$ git merge topic/one topic/two && git merge hold/linus (8)
$ git switch maint

$ git cherry-pick master~4 (9)
$ compile/test

$ git tag -s -m "GIT 0.99.9x" v0.99.9x (10)
$ git fetch ko && for branch in master maint next seen (11)

do

git show-branch ko/$branch $branch (12)
done

$ git push --follow-tags ko (13)

1. see what you were in the middle of

doing, if anything.

2. see which branches haven’t been

merged into master yet. Likewise

for any other integration branches

e.g. maint, next and seen.

3. read mails, save ones that are

applicable, and save others that are

not quite ready (other mail readers

are available).

4. apply them, interactively, with

your sign-offs.

5. create topic branch as needed and

apply, again with sign-offs.

6. rebase internal topic branch that

has not been merged to the master

or exposed as a part of a stable

branch.

GITEVERYDAY(7) Git Manual GITEVERYDAY(7)

Git 2.45.2 2024-05-30 GITEVERYDAY(7)

7. restart seen every time from the

next.

8. and bundle topic branches still

cooking.

9. backport a critical

fix.

10. create a signed

tag.

11. make sure master was not

accidentally rewound beyond that

already pushed out.

12. In the output from git
show-branch, master should have

everything ko/master has, and next
should have everything ko/next
has, etc.

13. push out the bleeding edge,

together with new tags that point

into the pushed history.

In this example, the ko shorthand points at the Git maintainer’s repository at kernel.org, and looks like

this:

(in .git/config)

[remote "ko"]

url = kernel.org:/pub/scm/git/git.git

fetch = refs/heads/*:refs/remotes/ko/*

push = refs/heads/master

push = refs/heads/next

push = +refs/heads/seen

push = refs/heads/maint

REPOSITORY ADMINISTRATION
A repository administrator uses the following tools to set up and maintain access to the repository by

developers.

+o

daemon(1) to allow anonymous download from repository.

GITEVERYDAY(7) Git Manual GITEVERYDAY(7)

Git 2.45.2 2024-05-30 GITEVERYDAY(7)

+o

shell(1) can be used as a restricted login shell for shared central repository users.

+o

http-backend(1) provides a server side implementation of Git-over-HTTP ("Smart http") allowing both

fetch and push services.

+o

provides a web front-end to Git repositories, which can be set-up using the git-instaweb(1) script.

update hook howto[1] has a good example of managing a shared central repository.

In addition there are a number of other widely deployed hosting, browsing and reviewing solutions

such as:

+o

gerrit code review, cgit and others.

Examples
We assume the following in /etc/services

$ grep 9418 /etc/services

git 9418/tcp # Git Version Control System

Run git-daemon to serve /pub/scm from inetd.

$ grep git /etc/inetd.conf

git stream tcp nowait nobody \

/usr/bin/git-daemon git-daemon --inetd --export-all /pub/scm

The actual configuration line should be on one line.

Run git-daemon to serve /pub/scm from xinetd.

$ cat /etc/xinetd.d/git-daemon

default: off

description: The Git server offers access to Git repositories

service git

{

GITEVERYDAY(7) Git Manual GITEVERYDAY(7)

Git 2.45.2 2024-05-30 GITEVERYDAY(7)

disable = no

type = UNLISTED

port = 9418

socket_type = stream

wait = no

user = nobody

server = /usr/bin/git-daemon

server_args = --inetd --export-all --base-path=/pub/scm

log_on_failure += USERID

}

Check your xinetd(8) documentation and setup, this is from a Fedora system. Others might be

different.

Give push/pull only access to developers using git-over-ssh.

e.g. those using: $ git push/pull ssh://host.xz/pub/scm/project

$ grep git /etc/passwd (1)
alice:x:1000:1000::/home/alice:/usr/bin/git-shell

bob:x:1001:1001::/home/bob:/usr/bin/git-shell

cindy:x:1002:1002::/home/cindy:/usr/bin/git-shell

david:x:1003:1003::/home/david:/usr/bin/git-shell

$ grep git /etc/shells (2)
/usr/bin/git-shell

1. log-in shell is set to

/usr/bin/git-shell, which does not

allow anything but git push and git
pull. The users require ssh access

to the machine.

2. in many distributions /etc/shells

needs to list what is used as the

login shell.

CVS-style shared repository.

$ grep git /etc/group (1)
git:x:9418:alice,bob,cindy,david

$ cd /home/devo.git

GITEVERYDAY(7) Git Manual GITEVERYDAY(7)

Git 2.45.2 2024-05-30 GITEVERYDAY(7)

$ ls -l (2)
lrwxrwxrwx 1 david git 17 Dec 4 22:40 HEAD -> refs/heads/master

drwxrwsr-x 2 david git 4096 Dec 4 22:40 branches

-rw-rw-r-- 1 david git 84 Dec 4 22:40 config

-rw-rw-r-- 1 david git 58 Dec 4 22:40 description

drwxrwsr-x 2 david git 4096 Dec 4 22:40 hooks

-rw-rw-r-- 1 david git 37504 Dec 4 22:40 index

drwxrwsr-x 2 david git 4096 Dec 4 22:40 info

drwxrwsr-x 4 david git 4096 Dec 4 22:40 objects

drwxrwsr-x 4 david git 4096 Nov 7 14:58 refs

drwxrwsr-x 2 david git 4096 Dec 4 22:40 remotes

$ ls -l hooks/update (3)
-r-xr-xr-x 1 david git 3536 Dec 4 22:40 update

$ cat info/allowed-users (4)
refs/heads/master alice\|cindy

refs/heads/doc-update bob

refs/tags/v[0-9]* david

1. place the developers into the same

git group.

2. and make the shared repository

writable by the group.

3. use update-hook example by Carl

from Documentation/howto/ for

branch policy control.

4. alice and cindy can push into

master, only bob can push into

doc-update. david is the release

manager and is the only person

who can create and push version

tags.

GIT
Part of the git(1) suite

NOTES
1. update hook howto

git-htmldocs/howto/update-hook-example.html

GITEVERYDAY(7) Git Manual GITEVERYDAY(7)

Git 2.45.2 2024-05-30 GITEVERYDAY(7)

