
NAME
gitformat-index - Git index format

SYNOPSIS
$GIT_DIR/index

DESCRIPTION
Git index format

THE GIT INDEX FILE HAS THE FOLLOWING FORMAT
All binary numbers are in network byte order.

In a repository using the traditional SHA-1, checksums and object IDs

(object names) mentioned below are all computed using SHA-1. Similarly,

in SHA-256 repositories, these values are computed using SHA-256.

Version 2 is described here unless stated otherwise.

+o

12-byte header consisting of

4-byte signature:

The signature is { ’D’, ’I’, ’R’, ’C’ } (stands for "dircache")

4-byte version number:

The current supported versions are 2, 3 and 4.

32-bit number of index entries.

+o

number of sorted index entries (see below).

+o

Extensions are identified by signature. Optional extensions can

be ignored if Git does not understand them.

4-byte extension signature. If the first byte is ’A’..’Z’ the

extension is optional and can be ignored.

32-bit size of the extension

GITFORMAT-INDEX(5) Git Manual GITFORMAT-INDEX(5)

Git 2.45.2 2024-05-30 GITFORMAT-INDEX(5)

Extension data

+o

checksum over the content of the index file before this checksum.

INDEX ENTRY
Index entries are sorted in ascending order on the name field,

interpreted as a string of unsigned bytes (i.e. memcmp() order, no

localization, no special casing of directory separator ’/’). Entries

with the same name are sorted by their stage field.

An index entry typically represents a file. However, if sparse-checkout

is enabled in cone mode (‘core.sparseCheckoutCone‘ is enabled) and the

‘extensions.sparseIndex‘ extension is enabled, then the index may

contain entries for directories outside of the sparse-checkout definition.

These entries have mode ‘040000‘, include the ‘SKIP_WORKTREE‘ bit, and

the path ends in a directory separator.

32-bit ctime seconds, the last time a file’s metadata changed

this is stat(2) data

32-bit ctime nanosecond fractions

this is stat(2) data

32-bit mtime seconds, the last time a file’s data changed

this is stat(2) data

32-bit mtime nanosecond fractions

this is stat(2) data

32-bit dev

this is stat(2) data

32-bit ino

this is stat(2) data

32-bit mode, split into (high to low bits)

16-bit unused, must be zero

GITFORMAT-INDEX(5) Git Manual GITFORMAT-INDEX(5)

Git 2.45.2 2024-05-30 GITFORMAT-INDEX(5)

4-bit object type

valid values in binary are 1000 (regular file), 1010 (symbolic link)

and 1110 (gitlink)

3-bit unused, must be zero

9-bit unix permission. Only 0755 and 0644 are valid for regular files.

Symbolic links and gitlinks have value 0 in this field.

32-bit uid

this is stat(2) data

32-bit gid

this is stat(2) data

32-bit file size

This is the on-disk size from stat(2), truncated to 32-bit.

Object name for the represented object

A 16-bit ’flags’ field split into (high to low bits)

1-bit assume-valid flag

1-bit extended flag (must be zero in version 2)

2-bit stage (during merge)

12-bit name length if the length is less than 0xFFF; otherwise 0xFFF

is stored in this field.

(Version 3 or later) A 16-bit field, only applicable if the

"extended flag" above is 1, split into (high to low bits).

1-bit reserved for future

1-bit skip-worktree flag (used by sparse checkout)

1-bit intent-to-add flag (used by "git add -N")

GITFORMAT-INDEX(5) Git Manual GITFORMAT-INDEX(5)

Git 2.45.2 2024-05-30 GITFORMAT-INDEX(5)

13-bit unused, must be zero

Entry path name (variable length) relative to top level directory

(without leading slash). ’/’ is used as path separator. The special

path components ".", ".." and ".git" (without quotes) are disallowed.

Trailing slash is also disallowed.

The exact encoding is undefined, but the ’.’ and ’/’ characters

are encoded in 7-bit ASCII and the encoding cannot contain a NUL

byte (iow, this is a UNIX pathname).

(Version 4) In version 4, the entry path name is prefix-compressed

relative to the path name for the previous entry (the very first

entry is encoded as if the path name for the previous entry is an

empty string). At the beginning of an entry, an integer N in the

variable width encoding (the same encoding as the offset is encoded

for OFS_DELTA pack entries; see linkgit:gitformat-pack[5]) is stored, followed

by a NUL-terminated string S. Removing N bytes from the end of the

path name for the previous entry, and replacing it with the string S

yields the path name for this entry.

1-8 nul bytes as necessary to pad the entry to a multiple of eight bytes

while keeping the name NUL-terminated.

(Version 4) In version 4, the padding after the pathname does not

exist.

Interpretation of index entries in split index mode is completely

different. See below for details.

EXTENSIONS
Cache tree

Since the index does not record entries for directories, the cache

entries cannot describe tree objects that already exist in the object

database for regions of the index that are unchanged from an existing

commit. The cache tree extension stores a recursive tree structure that

describes the trees that already exist and completely match sections of

the cache entries. This speeds up tree object generation from the index

for a new commit by only computing the trees that are "new" to that

commit. It also assists when comparing the index to another tree, such

GITFORMAT-INDEX(5) Git Manual GITFORMAT-INDEX(5)

Git 2.45.2 2024-05-30 GITFORMAT-INDEX(5)

as ‘HEAD^{tree}‘, since sections of the index can be skipped when a tree

comparison demonstrates equality.

The recursive tree structure uses nodes that store a number of cache

entries, a list of subnodes, and an object ID (OID). The OID references

the existing tree for that node, if it is known to exist. The subnodes

correspond to subdirectories that themselves have cache tree nodes. The

number of cache entries corresponds to the number of cache entries in

the index that describe paths within that tree’s directory.

The extension tracks the full directory structure in the cache tree

extension, but this is generally smaller than the full cache entry list.

When a path is updated in index, Git invalidates all nodes of the

recursive cache tree corresponding to the parent directories of that

path. We store these tree nodes as being "invalid" by using "-1" as the

number of cache entries. Invalid nodes still store a span of index

entries, allowing Git to focus its efforts when reconstructing a full

cache tree.

The signature for this extension is { ’T’, ’R’, ’E’, ’E’ }.

A series of entries fill the entire extension; each of which

consists of:

+o

path component (relative to its parent directory);

+o

decimal number of entries in the index that is covered by the tree this entry represents (entry_count);

+o

space (ASCII 32);

+o

decimal number that represents the number of subtrees this tree has;

+o

newline (ASCII 10); and

GITFORMAT-INDEX(5) Git Manual GITFORMAT-INDEX(5)

Git 2.45.2 2024-05-30 GITFORMAT-INDEX(5)

+o

name for the object that would result from writing this span of index as a tree.

An entry can be in an invalidated state and is represented by having

a negative number in the entry_count field. In this case, there is no

object name and the next entry starts immediately after the newline.

When writing an invalid entry, -1 should always be used as entry_count.

The entries are written out in the top-down, depth-first order. The

first entry represents the root level of the repository, followed by the

first subtree--let’s call this A--of the root level (with its name

relative to the root level), followed by the first subtree of A (with

its name relative to A), and so on. The specified number of subtrees

indicates when the current level of the recursive stack is complete.

Resolve undo
A conflict is represented in the index as a set of higher stage entries.

When a conflict is resolved (e.g. with "git add path"), these higher

stage entries will be removed and a stage-0 entry with proper resolution

is added.

When these higher stage entries are removed, they are saved in the

resolve undo extension, so that conflicts can be recreated (e.g. with

"git checkout -m"), in case users want to redo a conflict resolution

from scratch.

The signature for this extension is { ’R’, ’E’, ’U’, ’C’ }.

A series of entries fill the entire extension; each of which

consists of:

+o

pathname the entry describes (relative to the root of the repository, i.e. full pathname);

+o

NUL-terminated ASCII octal numbers, entry mode of entries in stage 1 to 3 (a missing stage is

represented by "0" in this field); and

+o

most three object names of the entry in stages from 1 to 3 (nothing is written for a missing stage).

GITFORMAT-INDEX(5) Git Manual GITFORMAT-INDEX(5)

Git 2.45.2 2024-05-30 GITFORMAT-INDEX(5)

Split index
In split index mode, the majority of index entries could be stored

in a separate file. This extension records the changes to be made on

top of that to produce the final index.

The signature for this extension is { ’l’, ’i’, ’n’, ’k’ }.

The extension consists of:

+o

of the shared index file. The shared index file path is $GIT_DIR/sharedindex.<hash>. If all bits are zero,

the index does not require a shared index file.

+o

ewah-encoded delete bitmap, each bit represents an entry in the shared index. If a bit is set, its

corresponding entry in the shared index will be removed from the final index. Note, because a delete

operation changes index entry positions, but we do need original positions in replace phase, it’s best to

just mark entries for removal, then do a mass deletion after replacement.

+o

ewah-encoded replace bitmap, each bit represents an entry in the shared index. If a bit is set, its

corresponding entry in the shared index will be replaced with an entry in this index file. All replaced

entries are stored in sorted order in this index. The first "1" bit in the replace bitmap corresponds to the

first index entry, the second "1" bit to the second entry and so on. Replaced entries may have empty path

names to save space.

The remaining index entries after replaced ones will be added to the

final index. These added entries are also sorted by entry name then

stage.

UNTRACKED CACHE
Untracked cache saves the untracked file list and necessary data to

verify the cache. The signature for this extension is { ’U’, ’N’,

’T’, ’R’ }.

The extension starts with

+o

sequence of NUL-terminated strings, preceded by the size of the sequence in variable width encoding.

Each string describes the environment where the cache can be used.

GITFORMAT-INDEX(5) Git Manual GITFORMAT-INDEX(5)

Git 2.45.2 2024-05-30 GITFORMAT-INDEX(5)

+o

data of $GIT_DIR/info/exclude. See "Index entry" section from ctime field until "file size".

+o

data of core.excludesFile

+o

dir_flags (see struct dir_struct)

+o

of $GIT_DIR/info/exclude. A null hash means the file does not exist.

+o

of core.excludesFile. A null hash means the file does not exist.

+o

string of per-dir exclude file name. This usually is ".gitignore".

+o

number of following directory blocks, variable width encoding. If this number is zero, the extension ends

here with a following NUL.

+o

number of directory blocks in depth-first-search order, each consists of

+o

number of untracked entries, variable width encoding.

+o

number of sub-directory blocks, variable width encoding.

+o

directory name terminated by NUL.

+o

number of untracked file/dir names terminated by NUL.

The remaining data of each directory block is grouped by type:

+o

GITFORMAT-INDEX(5) Git Manual GITFORMAT-INDEX(5)

Git 2.45.2 2024-05-30 GITFORMAT-INDEX(5)

ewah

bitmap,

the

n-th

bit

marks

whether

the

n-th

directory

has

valid

untracked

cache

entries.

+o

ewah bitmap, the n-th bit records "check-only" bit of read_directory_recursive() for the n-th directory.

+o

ewah bitmap, the n-th bit indicates whether hash and stat data is valid for the n-th directory and exists in

the next data.

+o

array of stat data. The n-th data corresponds with the n-th "one" bit in the previous ewah bitmap.

+o

array of hashes. The n-th hash corresponds with the n-th "one" bit in the previous ewah bitmap.

+o

NUL.

FILE SYSTEM MONITOR CACHE
The file system monitor cache tracks files for which the core.fsmonitor

hook has told us about changes. The signature for this extension is

{ ’F’, ’S’, ’M’, ’N’ }.

The extension starts with

+o

GITFORMAT-INDEX(5) Git Manual GITFORMAT-INDEX(5)

Git 2.45.2 2024-05-30 GITFORMAT-INDEX(5)

version number: the current supported versions are 1 and 2.

+o

1) 64-bit time: the extension data reflects all changes through the given time which is stored as the

nanoseconds elapsed since midnight, January 1, 1970.

+o

2) A null terminated string: an opaque token defined by the file system monitor application. The extension

data reflects all changes relative to that token.

+o

bitmap size: the size of the CE_FSMONITOR_VALID bitmap.

+o

ewah bitmap, the n-th bit indicates whether the n-th index entry is not CE_FSMONITOR_VALID.

END OF INDEX ENTRY
The End of Index Entry (EOIE) is used to locate the end of the variable

length index entries and the beginning of the extensions. Code can take

advantage of this to quickly locate the index extensions without having

to parse through all of the index entries.

Because it must be able to be loaded before the variable length cache

entries and other index extensions, this extension must be written last.

The signature for this extension is { ’E’, ’O’, ’I’, ’E’ }.

The extension consists of:

+o

offset to the end of the index entries

+o

over the extension types and their sizes (but not their contents). E.g. if we have "TREE" extension that is

N-bytes long, "REUC" extension that is M-bytes long, followed by "EOIE", then the hash would be:

Hash("TREE" + <binary-representation-of-N> +

"REUC" + <binary-representation-of-M>)

INDEX ENTRY OFFSET TABLE
The Index Entry Offset Table (IEOT) is used to help address the CPU

GITFORMAT-INDEX(5) Git Manual GITFORMAT-INDEX(5)

Git 2.45.2 2024-05-30 GITFORMAT-INDEX(5)

cost of loading the index by enabling multi-threading the process of

converting cache entries from the on-disk format to the in-memory format.

The signature for this extension is { ’I’, ’E’, ’O’, ’T’ }.

The extension consists of:

+o

version (currently 1)

+o

number of index offset entries each consisting of:

+o

offset from the beginning of the file to the first cache entry in this block of entries.

+o

count of cache entries in this block

SPARSE DIRECTORY ENTRIES
When using sparse-checkout in cone mode, some entire directories within

the index can be summarized by pointing to a tree object instead of the

entire expanded list of paths within that tree. An index containing such

entries is a "sparse index". Index format versions 4 and less were not

implemented with such entries in mind. Thus, for these versions, an

index containing sparse directory entries will include this extension

with signature { ’s’, ’d’, ’i’, ’r’ }. Like the split-index extension,

tools should avoid interacting with a sparse index unless they understand

this extension.

GIT
Part of the git(1) suite

GITFORMAT-INDEX(5) Git Manual GITFORMAT-INDEX(5)

Git 2.45.2 2024-05-30 GITFORMAT-INDEX(5)

