
NAME
gitmodules - Defining submodule properties

SYNOPSIS
$GIT_WORK_TREE/.gitmodules

DESCRIPTION
The .gitmodules file, located in the top-level directory of a Git working tree, is a text file with a syntax

matching the requirements of git-config(1).

The file contains one subsection per submodule, and the subsection value is the name of the

submodule. The name is set to the path where the submodule has been added unless it was customized

with the --name option of git submodule add. Each submodule section also contains the following

required keys:

submodule.<name>.path

Defines the path, relative to the top-level directory of the Git working tree, where the submodule

is expected to be checked out. The path name must not end with a /. All submodule paths must be

unique within the .gitmodules file.

submodule.<name>.url

Defines a URL from which the submodule repository can be cloned. This may be either an

absolute URL ready to be passed to git-clone(1) or (if it begins with ./ or ../) a location relative to

the superproject’s origin repository.

In addition, there are a number of optional keys:

submodule.<name>.update

Defines the default update procedure for the named submodule, i.e. how the submodule is updated

by the git submodule update command in the superproject. This is only used by git submodule init
to initialize the configuration variable of the same name. Allowed values here are checkout,

rebase, merge or none, but not !command (for security reasons). See the description of the update

command in git-submodule(1) for more details.

submodule.<name>.branch

A remote branch name for tracking updates in the upstream submodule. If the option is not

specified, it defaults to the remote HEAD. A special value of . is used to indicate that the name of

the branch in the submodule should be the same name as the current branch in the current

repository. See the --remote documentation in git-submodule(1) for details.

GITMODULES(5) Git Manual GITMODULES(5)

Git 2.42.0 2023-08-21 GITMODULES(5)

submodule.<name>.fetchRecurseSubmodules

This option can be used to control recursive fetching of this submodule. If this option is also

present in the submodule’s entry in .git/config of the superproject, the setting there will override

the one found in .gitmodules. Both settings can be overridden on the command line by using the

--[no-]recurse-submodules option to git fetch and git pull.

submodule.<name>.ignore

Defines under what circumstances git status and the diff family show a submodule as modified.

The following values are supported:

all

The submodule will never be considered modified (but will nonetheless show up in the

output of status and commit when it has been staged).

dirty

All changes to the submodule’s work tree will be ignored, only committed differences

between the HEAD of the submodule and its recorded state in the superproject are taken into

account.

untracked

Only untracked files in submodules will be ignored. Committed differences and

modifications to tracked files will show up.

none

No modifications to submodules are ignored, all of committed differences, and modifications

to tracked and untracked files are shown. This is the default option.

If this option is also present in the submodule’s entry in .git/config of the superproject, the setting

there will override the one found in .gitmodules.

Both settings can be overridden on the command line by using the --ignore-submodules option.

The git submodule commands are not affected by this setting.

submodule.<name>.shallow

When set to true, a clone of this submodule will be performed as a shallow clone (with a history

depth of 1) unless the user explicitly asks for a non-shallow clone.

NOTES
Git does not allow the .gitmodules file within a working tree to be a symbolic link, and will refuse to

check out such a tree entry. This keeps behavior consistent when the file is accessed from the index or

GITMODULES(5) Git Manual GITMODULES(5)

Git 2.42.0 2023-08-21 GITMODULES(5)

a tree versus from the filesystem, and helps Git reliably enforce security checks of the file contents.

EXAMPLES
Consider the following .gitmodules file:

[submodule "libfoo"]

path = include/foo

url = git://foo.com/git/lib.git

[submodule "libbar"]

path = include/bar

url = git://bar.com/git/lib.git

This defines two submodules, libfoo and libbar. These are expected to be checked out in the paths

include/foo and include/bar, and for both submodules a URL is specified which can be used for cloning

the submodules.

SEE ALSO
git-submodule(1), gitsubmodules(7), git-config(1)

GIT
Part of the git(1) suite

GITMODULES(5) Git Manual GITMODULES(5)

Git 2.42.0 2023-08-21 GITMODULES(5)

