
NAME
gitremote-helpers - Helper programs to interact with remote repositories

SYNOPSIS
git remote-<transport> <repository> [<URL>]

DESCRIPTION
Remote helper programs are normally not used directly by end users, but they are invoked by Git when

it needs to interact with remote repositories Git does not support natively. A given helper will

implement a subset of the capabilities documented here. When Git needs to interact with a repository

using a remote helper, it spawns the helper as an independent process, sends commands to the helper’s

standard input, and expects results from the helper’s standard output. Because a remote helper runs as

an independent process from Git, there is no need to re-link Git to add a new helper, nor any need to

link the helper with the implementation of Git.

Every helper must support the "capabilities" command, which Git uses to determine what other

commands the helper will accept. Those other commands can be used to discover and update remote

refs, transport objects between the object database and the remote repository, and update the local

object store.

Git comes with a "curl" family of remote helpers, that handle various transport protocols, such as

git-remote-http, git-remote-https, git-remote-ftp and git-remote-ftps. They implement the capabilities

fetch, option, and push.

INVOCATION
Remote helper programs are invoked with one or (optionally) two arguments. The first argument

specifies a remote repository as in Git; it is either the name of a configured remote or a URL. The

second argument specifies a URL; it is usually of the form <transport>://<address>, but any arbitrary

string is possible. The GIT_DIR environment variable is set up for the remote helper and can be used to

determine where to store additional data or from which directory to invoke auxiliary Git commands.

When Git encounters a URL of the form <transport>://<address>, where <transport> is a protocol that

it cannot handle natively, it automatically invokes git remote-<transport> with the full URL as the

second argument. If such a URL is encountered directly on the command line, the first argument is the

same as the second, and if it is encountered in a configured remote, the first argument is the name of

that remote.

A URL of the form <transport>::<address> explicitly instructs Git to invoke git remote-<transport>

with <address> as the second argument. If such a URL is encountered directly on the command line,

GITREMOTE-HELPERS(7) Git Manual GITREMOTE-HELPERS(7)

Git 2.42.0 2023-08-21 GITREMOTE-HELPERS(7)



the first argument is <address>, and if it is encountered in a configured remote, the first argument is the

name of that remote.

Additionally, when a configured remote has remote.<name>.vcs set to <transport>, Git explicitly

invokes git remote-<transport> with <name> as the first argument. If set, the second argument is

remote.<name>.url; otherwise, the second argument is omitted.

INPUT FORMAT
Git sends the remote helper a list of commands on standard input, one per line. The first command is

always the capabilities command, in response to which the remote helper must print a list of the

capabilities it supports (see below) followed by a blank line. The response to the capabilities command

determines what commands Git uses in the remainder of the command stream.

The command stream is terminated by a blank line. In some cases (indicated in the documentation of

the relevant commands), this blank line is followed by a payload in some other protocol (e.g., the pack

protocol), while in others it indicates the end of input.

Capabilities
Each remote helper is expected to support only a subset of commands. The operations a helper supports

are declared to Git in the response to the capabilities command (see COMMANDS, below).

In the following, we list all defined capabilities and for each we list which commands a helper with that

capability must provide.

Capabilities for Pushing

connect

Can attempt to connect to git receive-pack (for pushing), git upload-pack, etc for

communication using git’s native packfile protocol. This requires a bidirectional, full-duplex

connection.

Supported commands: connect.

stateless-connect

Experimental; for internal use only. Can attempt to connect to a remote server for

communication using git’s wire-protocol version 2. See the documentation for the

stateless-connect command for more information.

Supported commands: stateless-connect.

GITREMOTE-HELPERS(7) Git Manual GITREMOTE-HELPERS(7)

Git 2.42.0 2023-08-21 GITREMOTE-HELPERS(7)



push

Can discover remote refs and push local commits and the history leading up to them to new

or existing remote refs.

Supported commands: list for-push, push.

export

Can discover remote refs and push specified objects from a fast-import stream to remote refs.

Supported commands: list for-push, export.

If a helper advertises connect, Git will use it if possible and fall back to another capability if the

helper requests so when connecting (see the connect command under COMMANDS). When

choosing between push and export, Git prefers push. Other frontends may have some other order

of preference.

no-private-update

When using the refspec capability, git normally updates the private ref on successful push.

This update is disabled when the remote-helper declares the capability no-private-update.

Capabilities for Fetching

connect

Can try to connect to git upload-pack (for fetching), git receive-pack, etc for communication

using the Git’s native packfile protocol. This requires a bidirectional, full-duplex connection.

Supported commands: connect.

stateless-connect

Experimental; for internal use only. Can attempt to connect to a remote server for

communication using git’s wire-protocol version 2. See the documentation for the

stateless-connect command for more information.

Supported commands: stateless-connect.

fetch

Can discover remote refs and transfer objects reachable from them to the local object store.

Supported commands: list, fetch.

GITREMOTE-HELPERS(7) Git Manual GITREMOTE-HELPERS(7)

Git 2.42.0 2023-08-21 GITREMOTE-HELPERS(7)



import

Can discover remote refs and output objects reachable from them as a stream in fast-import

format.

Supported commands: list, import.

check-connectivity

Can guarantee that when a clone is requested, the received pack is self contained and is

connected.

get

Can use the get command to download a file from a given URI.

If a helper advertises connect, Git will use it if possible and fall back to another capability if the

helper requests so when connecting (see the connect command under COMMANDS). When

choosing between fetch and import, Git prefers fetch. Other frontends may have some other order

of preference.

Miscellaneous capabilities

option

For specifying settings like verbosity (how much output to write to stderr) and depth (how

much history is wanted in the case of a shallow clone) that affect how other commands are

carried out.

refspec <refspec>

For remote helpers that implement import or export, this capability allows the refs to be

constrained to a private namespace, instead of writing to refs/heads or refs/remotes directly.

It is recommended that all importers providing the import capability use this. It’s mandatory

for export.

A helper advertising the capability refspec refs/heads/*:refs/svn/origin/branches/* is saying

that, when it is asked to import refs/heads/topic, the stream it outputs will update the

refs/svn/origin/branches/topic ref.

This capability can be advertised multiple times. The first applicable refspec takes

precedence. The left-hand of refspecs advertised with this capability must cover all refs

reported by the list command. If no refspec capability is advertised, there is an implied

refspec *:*.

GITREMOTE-HELPERS(7) Git Manual GITREMOTE-HELPERS(7)

Git 2.42.0 2023-08-21 GITREMOTE-HELPERS(7)



When writing remote-helpers for decentralized version control systems, it is advised to keep

a local copy of the repository to interact with, and to let the private namespace refs point to

this local repository, while the refs/remotes namespace is used to track the remote repository.

bidi-import

This modifies the import capability. The fast-import commands cat-blob and ls can be used

by remote-helpers to retrieve information about blobs and trees that already exist in

fast-import’s memory. This requires a channel from fast-import to the remote-helper. If it is

advertised in addition to "import", Git establishes a pipe from fast-import to the

remote-helper’s stdin. It follows that Git and fast-import are both connected to the

remote-helper’s stdin. Because Git can send multiple commands to the remote-helper it is

required that helpers that use bidi-import buffer all import commands of a batch before

sending data to fast-import. This is to prevent mixing commands and fast-import responses

on the helper’s stdin.

export-marks <file>

This modifies the export capability, instructing Git to dump the internal marks table to <file>

when complete. For details, read up on --export-marks=<file> in git-fast-export(1).

import-marks <file>

This modifies the export capability, instructing Git to load the marks specified in <file>

before processing any input. For details, read up on --import-marks=<file> in git-fast-
export(1).

signed-tags

This modifies the export capability, instructing Git to pass --signed-tags=verbatim to git-fast-
export(1). In the absence of this capability, Git will use --signed-tags=warn-strip.

object-format

This indicates that the helper is able to interact with the remote side using an explicit hash

algorithm extension.

COMMANDS
Commands are given by the caller on the helper’s standard input, one per line.

capabilities

Lists the capabilities of the helper, one per line, ending with a blank line. Each capability may be

preceded with *, which marks them mandatory for Git versions using the remote helper to

understand. Any unknown mandatory capability is a fatal error.

GITREMOTE-HELPERS(7) Git Manual GITREMOTE-HELPERS(7)

Git 2.42.0 2023-08-21 GITREMOTE-HELPERS(7)



Support for this command is mandatory.

list

Lists the refs, one per line, in the format "<value> <name> [<attr> ...]". The value may be a hex

sha1 hash, "@<dest>" for a symref, ":<keyword> <value>" for a key-value pair, or "?" to indicate

that the helper could not get the value of the ref. A space-separated list of attributes follows the

name; unrecognized attributes are ignored. The list ends with a blank line.

See REF LIST ATTRIBUTES for a list of currently defined attributes. See REF LIST

KEYWORDS for a list of currently defined keywords.

Supported if the helper has the "fetch" or "import" capability.

list for-push

Similar to list, except that it is used if and only if the caller wants to the resulting ref list to prepare

push commands. A helper supporting both push and fetch can use this to distinguish for which

operation the output of list is going to be used, possibly reducing the amount of work that needs to

be performed.

Supported if the helper has the "push" or "export" capability.

option <name> <value>

Sets the transport helper option <name> to <value>. Outputs a single line containing one of ok

(option successfully set), unsupported (option not recognized) or error <msg> (option <name> is

supported but <value> is not valid for it). Options should be set before other commands, and may

influence the behavior of those commands.

See OPTIONS for a list of currently defined options.

Supported if the helper has the "option" capability.

fetch <sha1> <name>

Fetches the given object, writing the necessary objects to the database. Fetch commands are sent

in a batch, one per line, terminated with a blank line. Outputs a single blank line when all fetch

commands in the same batch are complete. Only objects which were reported in the output of list

with a sha1 may be fetched this way.

Optionally may output a lock <file> line indicating the full path of a file under

$GIT_DIR/objects/pack which is keeping a pack until refs can be suitably updated. The path must

end with .keep. This is a mechanism to name a <pack,idx,keep> tuple by giving only the keep

GITREMOTE-HELPERS(7) Git Manual GITREMOTE-HELPERS(7)

Git 2.42.0 2023-08-21 GITREMOTE-HELPERS(7)



component. The kept pack will not be deleted by a concurrent repack, even though its objects may

not be referenced until the fetch completes. The .keep file will be deleted at the conclusion of the

fetch.

If option check-connectivity is requested, the helper must output connectivity-ok if the clone is

self-contained and connected.

Supported if the helper has the "fetch" capability.

push +<src>:<dst>

Pushes the given local <src> commit or branch to the remote branch described by <dst>. A batch

sequence of one or more push commands is terminated with a blank line (if there is only one

reference to push, a single push command is followed by a blank line). For example, the following

would be two batches of push, the first asking the remote-helper to push the local ref master to the

remote ref master and the local HEAD to the remote branch, and the second asking to push ref foo

to ref bar (forced update requested by the +).

push refs/heads/master:refs/heads/master

push HEAD:refs/heads/branch

\n

push +refs/heads/foo:refs/heads/bar

\n

Zero or more protocol options may be entered after the last push command, before the batch’s

terminating blank line.

When the push is complete, outputs one or more ok <dst> or error <dst> <why>? lines to indicate

success or failure of each pushed ref. The status report output is terminated by a blank line. The

option field <why> may be quoted in a C style string if it contains an LF.

Supported if the helper has the "push" capability.

import <name>

Produces a fast-import stream which imports the current value of the named ref. It may

additionally import other refs as needed to construct the history efficiently. The script writes to a

helper-specific private namespace. The value of the named ref should be written to a location in

this namespace derived by applying the refspecs from the "refspec" capability to the name of the

ref.

Especially useful for interoperability with a foreign versioning system.

GITREMOTE-HELPERS(7) Git Manual GITREMOTE-HELPERS(7)

Git 2.42.0 2023-08-21 GITREMOTE-HELPERS(7)



Just like push, a batch sequence of one or more import is terminated with a blank line. For each

batch of import, the remote helper should produce a fast-import stream terminated by a done

command.

Note that if the bidi-import capability is used the complete batch sequence has to be buffered

before starting to send data to fast-import to prevent mixing of commands and fast-import

responses on the helper’s stdin.

Supported if the helper has the "import" capability.

export

Instructs the remote helper that any subsequent input is part of a fast-import stream (generated by

git fast-export) containing objects which should be pushed to the remote.

Especially useful for interoperability with a foreign versioning system.

The export-marks and import-marks capabilities, if specified, affect this command in so far as

they are passed on to git fast-export, which then will load/store a table of marks for local objects.

This can be used to implement for incremental operations.

Supported if the helper has the "export" capability.

connect <service>

Connects to given service. Standard input and standard output of helper are connected to specified

service (git prefix is included in service name so e.g. fetching uses git-upload-pack as service) on

remote side. Valid replies to this command are empty line (connection established), fallback (no

smart transport support, fall back to dumb transports) and just exiting with error message printed

(can’t connect, don’t bother trying to fall back). After line feed terminating the positive (empty)

response, the output of service starts. After the connection ends, the remote helper exits.

Supported if the helper has the "connect" capability.

stateless-connect <service>

Experimental; for internal use only. Connects to the given remote service for communication

using git’s wire-protocol version 2. Valid replies to this command are empty line (connection

established), fallback (no smart transport support, fall back to dumb transports) and just exiting

with error message printed (can’t connect, don’t bother trying to fall back). After line feed

terminating the positive (empty) response, the output of the service starts. Messages (both request

and response) must consist of zero or more PKT-LINEs, terminating in a flush packet. Response

messages will then have a response end packet after the flush packet to indicate the end of a

GITREMOTE-HELPERS(7) Git Manual GITREMOTE-HELPERS(7)

Git 2.42.0 2023-08-21 GITREMOTE-HELPERS(7)



response. The client must not expect the server to store any state in between request-response

pairs. After the connection ends, the remote helper exits.

Supported if the helper has the "stateless-connect" capability.

get <uri> <path>

Downloads the file from the given <uri> to the given <path>. If <path>.temp exists, then Git

assumes that the .temp file is a partial download from a previous attempt and will resume the

download from that position.

If a fatal error occurs, the program writes the error message to stderr and exits. The caller should expect

that a suitable error message has been printed if the child closes the connection without completing a

valid response for the current command.

Additional commands may be supported, as may be determined from capabilities reported by the

helper.

REF LIST ATTRIBUTES
The list command produces a list of refs in which each ref may be followed by a list of attributes. The

following ref list attributes are defined.

unchanged

This ref is unchanged since the last import or fetch, although the helper cannot necessarily

determine what value that produced.

REF LIST KEYWORDS
The list command may produce a list of key-value pairs. The following keys are defined.

object-format

The refs are using the given hash algorithm. This keyword is only used if the server and client

both support the object-format extension.

OPTIONS
The following options are defined and (under suitable circumstances) set by Git if the remote helper

has the option capability.

option verbosity <n>

Changes the verbosity of messages displayed by the helper. A value of 0 for <n> means that

processes operate quietly, and the helper produces only error output. 1 is the default level of

verbosity, and higher values of <n> correspond to the number of -v flags passed on the command

GITREMOTE-HELPERS(7) Git Manual GITREMOTE-HELPERS(7)

Git 2.42.0 2023-08-21 GITREMOTE-HELPERS(7)



line.

option progress {true|false}

Enables (or disables) progress messages displayed by the transport helper during a command.

option depth <depth>

Deepens the history of a shallow repository.

’option deepen-since <timestamp>

Deepens the history of a shallow repository based on time.

’option deepen-not <ref>

Deepens the history of a shallow repository excluding ref. Multiple options add up.

option deepen-relative {’true|false}

Deepens the history of a shallow repository relative to current boundary. Only valid when used

with "option depth".

option followtags {true|false}

If enabled the helper should automatically fetch annotated tag objects if the object the tag points at

was transferred during the fetch command. If the tag is not fetched by the helper a second fetch

command will usually be sent to ask for the tag specifically. Some helpers may be able to use this

option to avoid a second network connection.

option dry-run {true|false}: If true, pretend the operation completed successfully, but don’t actually

change any repository data. For most helpers this only applies to the push, if supported.

option servpath <c-style-quoted-path>

Sets service path (--upload-pack, --receive-pack etc.) for next connect. Remote helper may support

this option, but must not rely on this option being set before connect request occurs.

option check-connectivity {true|false}

Request the helper to check connectivity of a clone.

option force {true|false}

Request the helper to perform a force update. Defaults to false.

option cloning {true|false}

Notify the helper this is a clone request (i.e. the current repository is guaranteed empty).

GITREMOTE-HELPERS(7) Git Manual GITREMOTE-HELPERS(7)

Git 2.42.0 2023-08-21 GITREMOTE-HELPERS(7)



option update-shallow {true|false}

Allow to extend .git/shallow if the new refs require it.

option pushcert {true|false}

GPG sign pushes.

’option push-option <string>

Transmit <string> as a push option. As the push option must not contain LF or NUL characters,

the string is not encoded.

option from-promisor {true|false}

Indicate that these objects are being fetched from a promisor.

option no-dependents {true|false}

Indicate that only the objects wanted need to be fetched, not their dependents.

option atomic {true|false}

When pushing, request the remote server to update refs in a single atomic transaction. If

successful, all refs will be updated, or none will. If the remote side does not support this

capability, the push will fail.

option object-format {true|algorithm}

If true, indicate that the caller wants hash algorithm information to be passed back from the

remote. This mode is used when fetching refs.

If set to an algorithm, indicate that the caller wants to interact with the remote side using that

algorithm.

SEE ALSO
git-remote(1)

git-remote-ext(1)

git-remote-fd(1)

git-fast-import(1)

GIT
Part of the git(1) suite

GITREMOTE-HELPERS(7) Git Manual GITREMOTE-HELPERS(7)

Git 2.42.0 2023-08-21 GITREMOTE-HELPERS(7)


