
NAME
gitweb - Git web interface (web frontend to Git repositories)

SYNOPSIS
To get started with gitweb, run git-instaweb(1) from a Git repository. This would configure and start

your web server, and run web browser pointing to gitweb.

DESCRIPTION
Gitweb provides a web interface to Git repositories. Its features include:

+o

multiple Git repositories with common root.

+o

every revision of the repository.

+o

the contents of files in the repository at any revision.

+o

the revision log of branches, history of files and directories, see what was changed when, by who.

+o

the blame/annotation details of any file (if enabled).

+o

RSS and Atom feeds of commits, for any branch. The feeds are auto-discoverable in modern web

browsers.

+o

everything that was changed in a revision, and step through revisions one at a time, viewing the history of

the repository.

+o

commits which commit messages matches given search term.

See http://repo.or.cz/w/git.git/tree/HEAD:/gitweb/ for gitweb source code, browsed using gitweb itself.

CONFIGURATION
Various aspects of gitweb’s behavior can be controlled through the configuration file

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

gitweb_config.perl or /etc/gitweb.conf.
See the gitweb.conf(5) for details.

Repositories
Gitweb can show information from one or more Git repositories. These repositories have to be all on

local filesystem, and have to share common repository root, i.e. be all under a single parent repository

(but see also "Advanced web server setup" section, "Webserver configuration with multiple projects’

root" subsection).

our $projectroot = ’/path/to/parent/directory’;

The default value for $projectroot is /pub/git. You can change it during building gitweb via

GITWEB_PROJECTROOT build configuration variable.

By default all Git repositories under $projectroot are visible and available to gitweb. The list of projects

is generated by default by scanning the $projectroot directory for Git repositories (for object databases

to be more exact; gitweb is not interested in a working area, and is best suited to showing "bare"

repositories).

The name of the repository in gitweb is the path to its $GIT_DIR (its object database) relative to

$projectroot. Therefore the repository $repo can be found at "$projectroot/$repo".

Projects list file format
Instead of having gitweb find repositories by scanning filesystem starting from $projectroot, you can

provide a pre-generated list of visible projects by setting $projects_list to point to a plain text file with

a list of projects (with some additional info).

This file uses the following format:

+o

record (for project / repository) per line; does not support line continuation (newline escaping).

+o

and trailing whitespace are ignored.

+o

separated fields; any run of whitespace can be used as field separator (rules for Perl’s "split(" ", $line)").

+o

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

use modified URI encoding, defined in RFC 3986, section 2.1

(Percent-Encoding), or rather "Query string encoding" (see

https://en.wikipedia.org/wiki/Query_string#URL_encoding), the difference

being that SP (" ") can be encoded as "+" (and therefore "+" has to be also

percent-encoded).

Reserved characters are: "%" (used for encoding), "+" (can be used to

encode SPACE), all whitespace characters as defined in Perl, including SP,

TAB and LF, (used to separate fields in a record).

+o

recognized fields are:

<repository path>

path to repository GIT_DIR, relative to $projectroot

<repository owner>

displayed as repository owner, preferably full name, or email, or both

You can generate the projects list index file using the project_index action (the TXT link on projects

list page) directly from gitweb; see also "Generating projects list using gitweb" section below.

Example contents:

foo.git Joe+R+Hacker+<joe@example.com>

foo/bar.git O+W+Ner+<owner@example.org>

By default this file controls only which projects are visible on projects list page (note that entries that

do not point to correctly recognized Git repositories won’t be displayed by gitweb). Even if a project is

not visible on projects list page, you can view it nevertheless by hand-crafting a gitweb URL. By

setting $strict_export configuration variable (see gitweb.conf(5)) to true value you can allow viewing

only of repositories also shown on the overview page (i.e. only projects explicitly listed in projects list

file will be accessible).

Generating projects list using gitweb
We assume that GITWEB_CONFIG has its default Makefile value, namely gitweb_config.perl. Put the

following in gitweb_make_index.perl file:

read_config_file("gitweb_config.perl");

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

$projects_list = $projectroot;

Then create the following script to get list of project in the format suitable for GITWEB_LIST build

configuration variable (or $projects_list variable in gitweb config):

#!/bin/sh

export GITWEB_CONFIG="gitweb_make_index.perl"

export GATEWAY_INTERFACE="CGI/1.1"

export HTTP_ACCEPT="*/*"

export REQUEST_METHOD="GET"

export QUERY_STRING="a=project_index"

perl -- /var/www/cgi-bin/gitweb.cgi

Run this script and save its output to a file. This file could then be used as projects list file, which

means that you can set $projects_list to its filename.

Controlling access to Git repositories
By default all Git repositories under $projectroot are visible and available to gitweb. You can however

configure how gitweb controls access to repositories.

+o

described in "Projects list file format" section, you can control which projects are visible by selectively

including repositories in projects list file, and setting $projects_list gitweb configuration variable to point

to it. With $strict_export set, projects list file can be used to control which repositories are available as

well.

+o

can configure gitweb to only list and allow viewing of the explicitly exported repositories, via $export_ok
variable in gitweb config file; see gitweb.conf(5) manpage. If it evaluates to true, gitweb shows

repositories only if this file named by $export_ok exists in its object database (if directory has the magic

file named $export_ok).

For example git-daemon(1) by default (unless --export-all option is used) allows pulling only for those

repositories that have git-daemon-export-ok file. Adding

our $export_ok = "git-daemon-export-ok";

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

makes gitweb show and allow access only to those repositories that can be fetched from via git://
protocol.

+o

it is possible to specify an arbitrary perl subroutine that will be called for each repository to determine if it

can be exported. The subroutine receives an absolute path to the project (repository) as its only parameter

(i.e. "$projectroot/$project").

For example, if you use mod_perl to run the script, and have dumb HTTP protocol authentication

configured for your repositories, you can use the following hook to allow access only if the user is

authorized to read the files:

$export_auth_hook = sub {

use Apache2::SubRequest ();

use Apache2::Const -compile => qw(HTTP_OK);

my $path = "$_[0]/HEAD";

my $r = Apache2::RequestUtil->request;

my $sub = $r->lookup_file($path);

return $sub->filename eq $path

&& $sub->status == Apache2::Const::HTTP_OK;

};

Per-repository gitweb configuration
You can configure individual repositories shown in gitweb by creating file in the GIT_DIR of Git

repository, or by setting some repo configuration variable (in GIT_DIR/config, see git-config(1)).

You can use the following files in repository:

README.html

A html file (HTML fragment) which is included on the gitweb project "summary" page inside

<div> block element. You can use it for longer description of a project, to provide links (for

example to project’s homepage), etc. This is recognized only if XSS prevention is off

($prevent_xss is false, see gitweb.conf(5)); a way to include a README safely when XSS

prevention is on may be worked out in the future.

description (or gitweb.description)

Short (shortened to $projects_list_description_width in the projects list page, which is 25

characters by default; see gitweb.conf(5)) single line description of a project (of a repository).

Plain text file; HTML will be escaped. By default set to

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

Unnamed repository; edit this file to name it for gitweb.

from the template during repository creation, usually installed in /usr/share/git-core/templates/.
You can use the gitweb.description repo configuration variable, but the file takes precedence.

category (or gitweb.category)

Singe line category of a project, used to group projects if $projects_list_group_categories is

enabled. By default (file and configuration variable absent), uncategorized projects are put in the

$project_list_default_category category. You can use the gitweb.category repo configuration

variable, but the file takes precedence.

The configuration variables $projects_list_group_categories and $project_list_default_category
are described in gitweb.conf(5)

cloneurl (or multiple-valued gitweb.url)
File with repository URL (used for clone and fetch), one per line. Displayed in the project

summary page. You can use multiple-valued gitweb.url repository configuration variable for that,

but the file takes precedence.

This is per-repository enhancement / version of global prefix-based @git_base_url_list gitweb

configuration variable (see gitweb.conf(5)).

gitweb.owner

You can use the gitweb.owner repository configuration variable to set repository’s owner. It is

displayed in the project list and summary page.

If it’s not set, filesystem directory’s owner is used (via GECOS field, i.e. real name field from

getpwuid(3)) if $projects_list is unset (gitweb scans $projectroot for repositories); if $projects_list
points to file with list of repositories, then project owner defaults to value from this file for given

repository.

various gitweb.* config variables (in config)

Read description of %feature hash for detailed list, and descriptions. See also "Configuring gitweb

features" section in gitweb.conf(5)

ACTIONS, AND URLS
Gitweb can use path_info (component) based URLs, or it can pass all necessary information via query

parameters. The typical gitweb URLs are broken down in to five components:

.../gitweb.cgi/<repo>/<action>/<revision>:/<path>?<arguments>

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

repo

The repository the action will be performed on.

All actions except for those that list all available projects, in whatever form, require this

parameter.

action

The action that will be run. Defaults to projects_list if repo is not set, and to summary otherwise.

revision

Revision shown. Defaults to HEAD.

path

The path within the <repository> that the action is performed on, for those actions that require it.

arguments

Any arguments that control the behaviour of the action.

Some actions require or allow to specify two revisions, and sometimes even two pathnames. In most

general form such path_info (component) based gitweb URL looks like this:

.../gitweb.cgi/<repo>/<action>/<revision_from>:/<path_from>..<revision_to>:/<path_to>?<arguments>

Each action is implemented as a subroutine, and must be present in %actions hash. Some actions are

disabled by default, and must be turned on via feature mechanism. For example to enable blame view

add the following to gitweb configuration file:

$feature{’blame’}{’default’} = [1];

Actions:
The standard actions are:

project_list

Lists the available Git repositories. This is the default command if no repository is specified in the

URL.

summary

Displays summary about given repository. This is the default command if no action is specified in

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

URL, and only repository is specified.

heads, remotes

Lists all local or all remote-tracking branches in given repository.

The latter is not available by default, unless configured.

tags

List all tags (lightweight and annotated) in given repository.

blob, tree

Shows the files and directories in a given repository path, at given revision. This is default

command if no action is specified in the URL, and path is given.

blob_plain

Returns the raw data for the file in given repository, at given path and revision. Links to this

action are marked raw.

blobdiff

Shows the difference between two revisions of the same file.

blame, blame_incremental

Shows the blame (also called annotation) information for a file. On a per line basis it shows the

revision in which that line was last changed and the user that committed the change. The

incremental version (which if configured is used automatically when JavaScript is enabled) uses

Ajax to incrementally add blame info to the contents of given file.

This action is disabled by default for performance reasons.

commit, commitdiff

Shows information about a specific commit in a repository. The commit view shows information

about commit in more detail, the commitdiff action shows changeset for given commit.

patch

Returns the commit in plain text mail format, suitable for applying with git-am(1).

tag

Display specific annotated tag (tag object).

log, shortlog

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

Shows log information (commit message or just commit subject) for a given branch (starting from

given revision).

The shortlog view is more compact; it shows one commit per line.

history

Shows history of the file or directory in a given repository path, starting from given revision

(defaults to HEAD, i.e. default branch).

This view is similar to shortlog view.

rss, atom

Generates an RSS (or Atom) feed of changes to repository.

WEBSERVER CONFIGURATION
This section explains how to configure some common webservers to run gitweb. In all cases,

/path/to/gitweb in the examples is the directory you ran installed gitweb in, and contains

gitweb_config.perl.

If you’ve configured a web server that isn’t listed here for gitweb, please send in the instructions so

they can be included in a future release.

Apache as CGI
Apache must be configured to support CGI scripts in the directory in which gitweb is installed. Let’s

assume that it is /var/www/cgi-bin directory.

ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"

<Directory "/var/www/cgi-bin">

Options Indexes FollowSymlinks ExecCGI

AllowOverride None

Order allow,deny

Allow from all

</Directory>

With that configuration the full path to browse repositories would be:

http://server/cgi-bin/gitweb.cgi

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

Apache with mod_perl, via ModPerl::Registry
You can use mod_perl with gitweb. You must install Apache::Registry (for mod_perl 1.x) or

ModPerl::Registry (for mod_perl 2.x) to enable this support.

Assuming that gitweb is installed to /var/www/perl, the following Apache configuration (for mod_perl

2.x) is suitable.

Alias /perl "/var/www/perl"

<Directory "/var/www/perl">

SetHandler perl-script

PerlResponseHandler ModPerl::Registry

PerlOptions +ParseHeaders

Options Indexes FollowSymlinks +ExecCGI

AllowOverride None

Order allow,deny

Allow from all

</Directory>

With that configuration the full path to browse repositories would be:

http://server/perl/gitweb.cgi

Apache with FastCGI
Gitweb works with Apache and FastCGI. First you need to rename, copy or symlink gitweb.cgi to

gitweb.fcgi. Let’s assume that gitweb is installed in /usr/share/gitweb directory. The following Apache

configuration is suitable (UNTESTED!)

FastCgiServer /usr/share/gitweb/gitweb.cgi

ScriptAlias /gitweb /usr/share/gitweb/gitweb.cgi

Alias /gitweb/static /usr/share/gitweb/static

<Directory /usr/share/gitweb/static>

SetHandler default-handler

</Directory>

With that configuration the full path to browse repositories would be:

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

http://server/gitweb

ADVANCED WEB SERVER SETUP
All of those examples use request rewriting, and need mod_rewrite (or equivalent; examples below are

written for Apache).

Single URL for gitweb and for fetching
If you want to have one URL for both gitweb and your http:// repositories, you can configure Apache

like this:

<VirtualHost *:80>

ServerName git.example.org

DocumentRoot /pub/git

SetEnv GITWEB_CONFIG /etc/gitweb.conf

turning on mod rewrite

RewriteEngine on

make the front page an internal rewrite to the gitweb script

RewriteRule ^/$ /cgi-bin/gitweb.cgi

make access for "dumb clients" work

RewriteRule ^/(.*\.git/(?!/?(HEAD|info|objects|refs)).*)?$ \

/cgi-bin/gitweb.cgi%{REQUEST_URI} [L,PT]

</VirtualHost>

The above configuration expects your public repositories to live under /pub/git and will serve them as

http://git.domain.org/dir-under-pub-git, both as clonable Git URL and as browsable gitweb interface. If

you then start your git-daemon(1) with --base-path=/pub/git --export-all then you can even use the git://
URL with exactly the same path.

Setting the environment variable GITWEB_CONFIG will tell gitweb to use the named file (i.e. in this

example /etc/gitweb.conf) as a configuration for gitweb. You don’t really need it in above example; it

is required only if your configuration file is in different place than built-in (during compiling gitweb)

gitweb_config.perl or /etc/gitweb.conf. See gitweb.conf(5) for details, especially information about

precedence rules.

If you use the rewrite rules from the example you might also need something like the following in your

gitweb configuration file (/etc/gitweb.conf following example):

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

@stylesheets = ("/some/absolute/path/gitweb.css");

$my_uri = "/";

$home_link = "/";

$per_request_config = 1;

Nowadays though gitweb should create HTML base tag when needed (to set base URI for relative

links), so it should work automatically.

Webserver configuration with multiple projects’ root
If you want to use gitweb with several project roots you can edit your Apache virtual host and gitweb

configuration files in the following way.

The virtual host configuration (in Apache configuration file) should look like this:

<VirtualHost *:80>

ServerName git.example.org

DocumentRoot /pub/git

SetEnv GITWEB_CONFIG /etc/gitweb.conf

turning on mod rewrite

RewriteEngine on

make the front page an internal rewrite to the gitweb script

RewriteRule ^/$ /cgi-bin/gitweb.cgi [QSA,L,PT]

look for a public_git directory in unix users’ home

http://git.example.org/~<user>/

RewriteRule ^/\~([^\/]+)(/|/gitweb.cgi)?$ /cgi-bin/gitweb.cgi \

[QSA,E=GITWEB_PROJECTROOT:/home/$1/public_git/,L,PT]

http://git.example.org/+<user>/

#RewriteRule ^/\+([^\/]+)(/|/gitweb.cgi)?$ /cgi-bin/gitweb.cgi \

[QSA,E=GITWEB_PROJECTROOT:/home/$1/public_git/,L,PT]

http://git.example.org/user/<user>/

#RewriteRule ^/user/([^\/]+)/(gitweb.cgi)?$ /cgi-bin/gitweb.cgi \

[QSA,E=GITWEB_PROJECTROOT:/home/$1/public_git/,L,PT]

defined list of project roots

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

RewriteRule ^/scm(/|/gitweb.cgi)?$ /cgi-bin/gitweb.cgi \

[QSA,E=GITWEB_PROJECTROOT:/pub/scm/,L,PT]

RewriteRule ^/var(/|/gitweb.cgi)?$ /cgi-bin/gitweb.cgi \

[QSA,E=GITWEB_PROJECTROOT:/var/git/,L,PT]

make access for "dumb clients" work

RewriteRule ^/(.*\.git/(?!/?(HEAD|info|objects|refs)).*)?$ \

/cgi-bin/gitweb.cgi%{REQUEST_URI} [L,PT]

</VirtualHost>

Here actual project root is passed to gitweb via GITWEB_PROJECT_ROOT environment variable

from a web server, so you need to put the following line in gitweb configuration file (/etc/gitweb.conf
in above example):

$projectroot = $ENV{’GITWEB_PROJECTROOT’} || "/pub/git";

Note that this requires to be set for each request, so either $per_request_config must be false, or the

above must be put in code referenced by $per_request_config;

These configurations enable two things. First, each unix user (<user>) of the server will be able to

browse through gitweb Git repositories found in ~/public_git/ with the following url:

http://git.example.org/~<user>/

If you do not want this feature on your server just remove the second rewrite rule.

If you already use ‘mod_userdir‘ in your virtual host or you don’t want to use the ’~’ as first character,

just comment or remove the second rewrite rule, and uncomment one of the following according to

what you want.

Second, repositories found in /pub/scm/ and /var/git/ will be accessible through

http://git.example.org/scm/ and http://git.example.org/var/. You can add as many project roots as you

want by adding rewrite rules like the third and the fourth.

PATH_INFO usage
If you enable PATH_INFO usage in gitweb by putting

$feature{’pathinfo’}{’default’} = [1];

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

in your gitweb configuration file, it is possible to set up your server so that it consumes and produces

URLs in the form

http://git.example.com/project.git/shortlog/sometag

i.e. without gitweb.cgi part, by using a configuration such as the following. This configuration assumes

that /var/www/gitweb is the DocumentRoot of your webserver, contains the gitweb.cgi script and

complementary static files (stylesheet, favicon, JavaScript):

<VirtualHost *:80>

ServerAlias git.example.com

DocumentRoot /var/www/gitweb

<Directory /var/www/gitweb>

Options ExecCGI

AddHandler cgi-script cgi

DirectoryIndex gitweb.cgi

RewriteEngine On

RewriteCond %{REQUEST_FILENAME} !-f

RewriteCond %{REQUEST_FILENAME} !-d

RewriteRule ^.* /gitweb.cgi/$0 [L,PT]

</Directory>

</VirtualHost>

The rewrite rule guarantees that existing static files will be properly served, whereas any other URL

will be passed to gitweb as PATH_INFO parameter.

Notice that in this case you don’t need special settings for @stylesheets, $my_uri and $home_link, but

you lose "dumb client" access to your project .git dirs (described in "Single URL for gitweb and for

fetching" section). A possible workaround for the latter is the following: in your project root dir (e.g.

/pub/git) have the projects named without a .git extension (e.g. /pub/git/project instead of

/pub/git/project.git) and configure Apache as follows:

<VirtualHost *:80>

ServerAlias git.example.com

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

DocumentRoot /var/www/gitweb

AliasMatch ^(/.*?)(\.git)(/.*)?$ /pub/git$1$3

<Directory /var/www/gitweb>

Options ExecCGI

AddHandler cgi-script cgi

DirectoryIndex gitweb.cgi

RewriteEngine On

RewriteCond %{REQUEST_FILENAME} !-f

RewriteCond %{REQUEST_FILENAME} !-d

RewriteRule ^.* /gitweb.cgi/$0 [L,PT]

</Directory>

</VirtualHost>

The additional AliasMatch makes it so that

http://git.example.com/project.git

will give raw access to the project’s Git dir (so that the project can be cloned), while

http://git.example.com/project

will provide human-friendly gitweb access.

This solution is not 100% bulletproof, in the sense that if some project has a named ref (branch, tag)

starting with git/, then paths such as

http://git.example.com/project/command/abranch..git/abranch

will fail with a 404 error.

BUGS
Please report any bugs or feature requests to git@vger.kernel.org[1], putting "gitweb" in the subject of

email.

SEE ALSO
gitweb.conf(5), git-instaweb(1)

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

gitweb/README, gitweb/INSTALL

GIT
Part of the git(1) suite

NOTES
1. git@vger.kernel.org

mailto:git@vger.kernel.org

GITWEB(1) Git Manual GITWEB(1)

Git 2.42.0 2023-08-21 GITWEB(1)

