
NAME
glib-compile-resources - GLib resource compiler

SYNOPSIS
glib-compile-resources [OPTION<?>] FILE

DESCRIPTION
glib-compile-resources reads the resource description from FILE and the files that it references and

creates a binary resource bundle that is suitable for use with the GResource API. The resulting bundle

is then written out as-is, or as C source for linking into an application.

The XML resource files normally have the filename extension .gresource.xml. For a detailed

description of the XML file format, see the GResource documentation.

OPTIONS
-h, --help

Print help and exit.

--version
Print program version and exit.

--target <TARGET>
Store the compiled resources in the file TARGET. If not specified a filename based on the FILE
basename is used.

--sourcedir <DIRECTORY>
The files referenced in FILE are loaded from this directory. If not specified, the current directory is

used.

--generate
Write the output file in the format selected for by its filename extension:

.c
C source

.h
C header

.gresource

GLIB-COMPILE-RESOURCES() GLIB-COMPILE-RESOURCES()

GLIB-COMPILE-RESOURCES()



resource bundle

--generate-source
Instead of a writing the resource bundle in binary form, create a C source file that contains the

resource bundle. This can then be compiled into an application for easy access.

--generate-header
Generate a header file for use with C code generated by --generate-source.

--generate-dependencies
Prints the list of files that the resource bundle references to standard output. This can be used to

track dependencies in the build system. For example, the following make rule would mark

test.gresource as depending on all the files that test.gresource.xml includes, so that it is

automatically rebuilt if any of them change:

test.gresource: test.gresource.xml $(shell $(GLIB_COMPILE_RESOURCES) --generate-dependencies test.gresource.xml)

Note that this may or may not be portable to non-GNU make.

Also see --dependency-file.

--c-name
Specify the prefix used for the C identifiers in the code generated by --generate-source and

--generate-header.

--manual-register
By default, code generated by --generate-source uses automatic initialization of the resource. This

works on most systems by using the compiler support for constructors. However, some

(uncommon) compilers may not support this, you can then specify --manual-register, which will

generate custom register and unregister functions that your code can manually call at initialization

and uninitialization time.

--internal
By default, code generated by --generate-source declares all initialization functions as extern. So

they are exported unless this is prevented by a link script or other means. Since libraries usually

want to use the functions only internally it can be more useful to declare them as

G_GNUC_INTERNAL which is what --internal does.

--external-data
By default, code generated by --generate-source embeds the resource data as a string literal. When

GLIB-COMPILE-RESOURCES() GLIB-COMPILE-RESOURCES()

GLIB-COMPILE-RESOURCES()



--external-data is given, the data is only declared in the generated C file, and the data has to be

linked externally.

--dependency-file <FILE>
Write dependencies in the same style as gcc -M -MF to the given file. If FILE is -, the

dependencies are written to the standard output. Unlike --generate-dependencies, this option can be

combined with other --generate options to generate dependencies as a side-effect of generating

sources.

--generate-phony-targets
When creating a dependency file with --dependency-file include phony targets in the same style as

gcc -MP. This would typically be used with make.

--compiler <NAME>
Generate code that is going to target the given compiler NAME. The current two compiler modes

are gcc, for all GCC-compatible toolchains; and msvc, for the Microsoft Visual C Compiler. If this

option isn’t set, then the default will be taken from the CC environment variable.

ENVIRONMENT
XMLLINT

The full path to the xmllint executable. This is used to preprocess resources with the

xml-stripblanks preprocessing option. If this environment variable is not set, xmllint is searched

for in the PATH.

GDK_PIXBUF_PIXDATA
Deprecated since gdk-pixbuf 2.32, as GResource supports embedding modern image formats

without conversion.

The full path to the gdk-pixbuf-pixdata executable. This is used to preprocess resources with the

to-pixdata preprocessing option. If this environment variable is not set, gdk-pixbuf-pixdata is

searched for in the PATH.

JSON_GLIB_FORMAT
The full path to the json-glib-format executable. This is used to preprocess resources with the

json-stripblanks preprocessing option. If this environment variable is not set, json-glib-format is

searched for in the PATH.

GLIB-COMPILE-RESOURCES() GLIB-COMPILE-RESOURCES()

GLIB-COMPILE-RESOURCES()


