
NAME
gpgsm - CMS encryption and signing tool

SYNOPSIS
gpgsm [--homedir dir] [--options file] [options] command [args]

DESCRIPTION
gpgsm is a tool similar to gpg to provide digital encryption and signing services on X.509 certificates

and the CMS protocol. It is mainly used as a backend for S/MIME mail processing. gpgsm includes a

full featured certificate management and complies with all rules defined for the German Sphinx project.

COMMANDS
Commands are not distinguished from options except for the fact that only one command is allowed.

Commands not specific to the function

--version
Print the program version and licensing information. Note that you cannot abbreviate this

command.

--help, -h
Print a usage message summarizing the most useful command-line options. Note that you cannot

abbreviate this command.

--warranty
Print warranty information. Note that you cannot abbreviate this command.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

--dump-options
Print a list of all available options and commands. Note that you cannot abbreviate this command.

Commands to select the type of operation

--encrypt
Perform an encryption. The keys the data is encrypted to must be set using the option --recipient.

--decrypt
Perform a decryption; the type of input is automatically determined. It may either be in binary

form or PEM encoded; automatic determination of base-64 encoding is not done.

--sign
Create a digital signature. The key used is either the fist one found in the keybox or those set with

the --local-user option.

--verify
Check a signature file for validity. Depending on the arguments a detached signature may also be

checked.

--server
Run in server mode and wait for commands on the stdin.

--call-dirmngr command [args]

Behave as a Dirmngr client issuing the request command with the optional list of args. The output

of the Dirmngr is printed stdout. Please note that file names given as arguments should have an

absolute file name (i.e. commencing with /) because they are passed verbatim to the Dirmngr and

the working directory of the Dirmngr might not be the same as the one of this client. Currently it

is not possible to pass data via stdin to the Dirmngr. command should not contain spaces.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

This is command is required for certain maintaining tasks of the dirmngr where a dirmngr must be

able to call back to gpgsm. See the Dirmngr manual for details.

--call-protect-tool arguments

Certain maintenance operations are done by an external program call gpg-protect-tool; this is

usually not installed in a directory listed in the PATH variable. This command provides a simple

wrapper to access this tool. arguments are passed verbatim to this command; use ‘--help’ to get a

list of supported operations.

How to manage the certificates and keys

--generate-key
--gen-key

This command allows the creation of a certificate signing request or a self-signed certificate. It is

commonly used along with the --output option to save the created CSR or certificate into a file. If

used with the --batch a parameter file is used to create the CSR or certificate and it is further

possible to create non-self-signed certificates.

--list-keys
-k List all available certificates stored in the local key database. Note that the displayed data might be

reformatted for better human readability and illegal characters are replaced by safe substitutes.

--list-secret-keys
-K List all available certificates for which a corresponding a secret key is available.

--list-external-keys pattern

List certificates matching pattern using an external server. This utilizes the dirmngr service.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

--list-chain
Same as --list-keys but also prints all keys making up the chain.

--dump-cert
--dump-keys

List all available certificates stored in the local key database using a format useful mainly for

debugging.

--dump-chain
Same as --dump-keys but also prints all keys making up the chain.

--dump-secret-keys
List all available certificates for which a corresponding a secret key is available using a format

useful mainly for debugging.

--dump-external-keys pattern

List certificates matching pattern using an external server. This utilizes the dirmngr service. It

uses a format useful mainly for debugging.

--show-certs [files]

This command takes certificate files as input and prints information about them in the same format

as --dump-cert does. Each file may either contain a single binary certificate or several PEM

encoded certificates. If no files are given, the input is taken from stdin.

Please note that the listing format may be changed in future releases and that the option --with-
colons has currently no effect.

--keydb-clear-some-cert-flags
This is a debugging aid to reset certain flags in the key database which are used to cache certain

certificate statuses. It is especially useful if a bad CRL or a weird running OCSP responder did

accidentally revoke certificate. There is no security issue with this command because gpgsm
always make sure that the validity of a certificate is checked right before it is used.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

--delete-keys pattern

Delete the keys matching pattern. Note that there is no command to delete the secret part of the

key directly. In case you need to do this, you should run the command gpgsm --dump-secret-keys
KEYID before you delete the key, copy the string of hex-digits in the ‘‘keygrip’’ line and delete

the file consisting of these hex-digits and the suffix .key from the ‘private-keys-v1.d’ directory

below our GnuPG home directory (usually ‘~/.gnupg’).

--export [pattern]

Export all certificates stored in the Keybox or those specified by the optional pattern. Those pattern

consist of a list of user ids (see: [how-to-specify-a-user-id]). When used along with the --armor
option a few informational lines are prepended before each block. There is one limitation: As

there is no commonly agreed upon way to pack more than one certificate into an ASN.1 structure,

the binary export (i.e. without using armor) works only for the export of one certificate. Thus it is

required to specify a pattern which yields exactly one certificate. Ephemeral certificate are only

exported if all pattern are given as fingerprints or keygrips.

--export-secret-key-p12 key-id

Export the private key and the certificate identified by key-id using the PKCS#12 format. When

used with the --armor option a few informational lines are prepended to the output. Note, that the

PKCS#12 format is not very secure and proper transport security should be used to convey the

exported key. (See: [option --p12-charset].)

--export-secret-key-p8 key-id

--export-secret-key-raw key-id

Export the private key of the certificate identified by key-id with any encryption stripped. The

...-raw command exports in PKCS#1 format; the ...-p8 command exports in PKCS#8 format.

When used with the --armor option a few informational lines are prepended to the output. These

commands are useful to prepare a key for use on a TLS server.

--import [files]

Import the certificates from the PEM or binary encoded files as well as from signed-only

messages. This command may also be used to import a secret key from a PKCS#12 file.

--learn-card
Read information about the private keys from the smartcard and import the certificates from there.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

This command utilizes the gpg-agent and in turn the scdaemon.

--change-passphrase user_id

--passwd user_id

Change the passphrase of the private key belonging to the certificate specified as user_id. Note,

that changing the passphrase/PIN of a smartcard is not yet supported.

OPTIONS
GPGSM features a bunch of options to control the exact behaviour and to change the default

configuration.

How to change the configuration

These options are used to change the configuration and are usually found in the option file.

--options file

Reads configuration from file instead of from the default per-user configuration file. The default

configuration file is named ‘gpgsm.conf’ and expected in the ‘.gnupg’ directory directly below the

home directory of the user.

--homedir dir

Set the name of the home directory to dir. If this option is not used, the home directory defaults to

‘~/.gnupg’. It is only recognized when given on the command line. It also overrides any home

directory stated through the environment variable ‘GNUPGHOME’ or (on Windows systems) by

means of the Registry entry HKCU\Software\GNU\GnuPG:HomeDir.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

On Windows systems it is possible to install GnuPG as a portable application. In this case only

this command line option is considered, all other ways to set a home directory are ignored.

To install GnuPG as a portable application under Windows, create an empty file named

‘gpgconf.ctl’ in the same directory as the tool ‘gpgconf.exe’. The root of the installation is then

that directory; or, if ‘gpgconf.exe’ has been installed directly below a directory named ‘bin’, its

parent directory. You also need to make sure that the following directories exist and are writable:

‘ROOT/home’ for the GnuPG home and ‘ROOT/var/cache/gnupg’ for internal cache files.

-v

--verbose
Outputs additional information while running. You can increase the verbosity by giving several

verbose commands to gpgsm, such as ‘-vv’.

--keyserver string

This is a deprecated option. It was used to add an LDAP server to use for X.509 certificate and

CRL lookup. The alias --ldapserver existed from version 2.2.28 to 2.2.33 and 2.3.2 to 2.3.4 but is

now entirely ignored.

LDAP servers must be given in the configuration for dirmngr.

--policy-file filename

Change the default name of the policy file to filename. The default name is ‘policies.txt’.

--agent-program file

Specify an agent program to be used for secret key operations. The default value is determined by

running the command gpgconf. Note that the pipe symbol (|) is used for a regression test suite

hack and may thus not be used in the file name.

--dirmngr-program file

Specify a dirmngr program to be used for CRL checks. The default value is

‘/usr/local/bin/dirmngr’.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

--prefer-system-dirmngr
This option is obsolete and ignored.

--disable-dirmngr
Entirely disable the use of the Dirmngr.

--no-autostart
Do not start the gpg-agent or the dirmngr if it has not yet been started and its service is required.

This option is mostly useful on machines where the connection to gpg-agent has been redirected to

another machines. If dirmngr is required on the remote machine, it may be started manually using

gpgconf --launch dirmngr.

--no-secmem-warning
Do not print a warning when the so called "secure memory" cannot be used.

--log-file file

When running in server mode, append all logging output to file. Use ‘socket://’ to log to socket.

--log-time
Prefix all log output with a timestamp even if no log file is used.

Certificate related options

--enable-policy-checks
--disable-policy-checks

By default policy checks are enabled. These options may be used to change it.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

--enable-crl-checks
--disable-crl-checks

By default the CRL checks are enabled and the DirMngr is used to check for revoked certificates.

The disable option is most useful with an off-line network connection to suppress this check and

also to avoid that new certificates introduce a web bug by including a certificate specific CRL DP.

The disable option also disables an issuer certificate lookup via the authorityInfoAccess property

of the certificate; the --enable-issuer-key-retrieve can be used to make use of that property anyway.

--enable-trusted-cert-crl-check
--disable-trusted-cert-crl-check

By default the CRL for trusted root certificates are checked like for any other certificates. This

allows a CA to revoke its own certificates voluntary without the need of putting all ever issued

certificates into a CRL. The disable option may be used to switch this extra check off. Due to the

caching done by the Dirmngr, there will not be any noticeable performance gain. Note, that this

also disables possible OCSP checks for trusted root certificates. A more specific way of disabling

this check is by adding the ‘‘relax’’ keyword to the root CA line of the ‘trustlist.txt’

--force-crl-refresh
Tell the dirmngr to reload the CRL for each request. For better performance, the dirmngr will

actually optimize this by suppressing the loading for short time intervals (e.g. 30 minutes). This

option is useful to make sure that a fresh CRL is available for certificates hold in the keybox. The

suggested way of doing this is by using it along with the option --with-validation for a key listing

command. This option should not be used in a configuration file.

--enable-issuer-based-crl-check
Run a CRL check even for certificates which do not have any CRL distribution point. This

requires that a suitable LDAP server has been configured in Dirmngr and that the CRL can be

found using the issuer. This option reverts to what GnuPG did up to version 2.2.20. This option is

in general not useful.

--enable-ocsp
--disable-ocsp

By default OCSP checks are disabled. The enable option may be used to enable OCSP checks via

Dirmngr. If CRL checks are also enabled, CRLs will be used as a fallback if for some reason an

OCSP request will not succeed. Note, that you have to allow OCSP requests in Dirmngr’s

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

configuration too (option --allow-ocsp) and configure Dirmngr properly. If you do not do so you

will get the error code ‘Not supported’.

--auto-issuer-key-retrieve
If a required certificate is missing while validating the chain of certificates, try to load that

certificate from an external location. This usually means that Dirmngr is employed to search for

the certificate. Note that this option makes a "web bug" like behavior possible. LDAP server

operators can see which keys you request, so by sending you a message signed by a brand new key

(which you naturally will not have on your local keybox), the operator can tell both your IP

address and the time when you verified the signature. Note that if CRL checking is not disabled

issuer certificates are retrieved in any case using the caIssuers authorityInfoAccess method.

--validation-model name

This option changes the default validation model. The only possible values are "shell" (which is

the default), "chain" which forces the use of the chain model and "steed" for a new simplified

model. The chain model is also used if an option in the ‘trustlist.txt’ or an attribute of the

certificate requests it. However the standard model (shell) is in that case always tried first.

--ignore-cert-extension oid

Add oid to the list of ignored certificate extensions. The oid is expected to be in dotted decimal

form, like 2.5.29.3. This option may be used more than once. Critical flagged certificate

extensions matching one of the OIDs in the list are treated as if they are actually handled and thus

the certificate will not be rejected due to an unknown critical extension. Use this option with care

because extensions are usually flagged as critical for a reason.

Input and Output

--armor
-a Create PEM encoded output. Default is binary output.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

--base64
Create Base-64 encoded output; i.e. PEM without the header lines.

--assume-armor
Assume the input data is PEM encoded. Default is to autodetect the encoding but this is may fail.

--assume-base64
Assume the input data is plain base-64 encoded.

--assume-binary
Assume the input data is binary encoded.

--input-size-hint n

This option can be used to tell GPGSM the size of the input data in bytes. n must be a positive

base-10 number. It is used by the --status-fd line ‘‘PROGRESS’’ to provide a value for ‘‘total’’ if

that is not available by other means.

--p12-charset name

gpgsm uses the UTF-8 encoding when encoding passphrases for PKCS#12 files. This option may

be used to force the passphrase to be encoded in the specified encoding name. This is useful if the

application used to import the key uses a different encoding and thus will not be able to import a

file generated by gpgsm. Commonly used values for name are Latin1 and CP850. Note that

gpgsm itself automagically imports any file with a passphrase encoded to the most commonly used

encodings.

--default-key user_id

Use user_id as the standard key for signing. This key is used if no other key has been defined as a

signing key. Note, that the first --local-users option also sets this key if it has not yet been set;

however --default-key always overrides this.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

--local-user user_id

-u user_id

Set the user(s) to be used for signing. The default is the first secret key found in the database.

--recipient name

-r Encrypt to the user id name. There are several ways a user id may be given (see: [how-to-specify-

a-user-id]).

--output file

-o file

Write output to file. The default is to write it to stdout.

--with-key-data
Displays extra information with the --list-keys commands. Especially a line tagged grp is printed

which tells you the keygrip of a key. This string is for example used as the file name of the secret

key. Implies --with-colons.

--with-validation
When doing a key listing, do a full validation check for each key and print the result. This is

usually a slow operation because it requires a CRL lookup and other operations.

When used along with --import, a validation of the certificate to import is done and only imported

if it succeeds the test. Note that this does not affect an already available certificate in the DB. This

option is therefore useful to simply verify a certificate.

--with-md5-fingerprint
For standard key listings, also print the MD5 fingerprint of the certificate.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

--with-keygrip
Include the keygrip in standard key listings. Note that the keygrip is always listed in --with-colons
mode.

--with-secret
Include info about the presence of a secret key in public key listings done with --with-colons.

--no-pretty-dn
By default gpgsm prints distinguished names (DNs) like the Issuer or Subject in a more readable

format (e.g. using a well defined order of the parts). However, this format can’t be used as input

strings. This option reverts printing to standard RFC-2253 format and thus avoids the need to use

--dump-cert or --with-colons to get the ‘‘real’’ name.

How to change how the CMS is created

--include-certs n

Using n of -2 includes all certificate except for the root cert, -1 includes all certs, 0 does not

include any certs, 1 includes only the signers cert and all other positive values include up to n

certificates starting with the signer cert. The default is -2.

--cipher-algo oid

Use the cipher algorithm with the ASN.1 object identifier oid for encryption. For convenience the

strings 3DES, AES and AES256 may be used instead of their OIDs. The default is AES
(2.16.840.1.101.3.4.1.2).

--digest-algo name
Use name as the message digest algorithm. Usually this algorithm is deduced from the respective

signing certificate. This option forces the use of the given algorithm and may lead to severe

interoperability problems.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

Doing things one usually do not want to do

--chuid uid

Change the current user to uid which may either be a number or a name. This can be used from the

root account to run gpgsm for another user. If uid is not the current UID a standard PATH is set

and the envvar GNUPGHOME is unset. To override the latter the option --homedir can be used.

This option has only an effect when used on the command line. This option has currently no effect

at all on Windows.

--extra-digest-algo name

Sometimes signatures are broken in that they announce a different digest algorithm than actually

used. gpgsm uses a one-pass data processing model and thus needs to rely on the announced digest

algorithms to properly hash the data. As a workaround this option may be used to tell gpgsm to

also hash the data using the algorithm name; this slows processing down a little bit but allows

verification of such broken signatures. If gpgsm prints an error like ‘‘digest algo 8 has not been

enabled’’ you may want to try this option, with ‘SHA256’ for name.

--compliance string

Set the compliance mode. Valid values are shown when using "help" for string.

--min-rsa-length n

This option adjusts the compliance mode "de-vs" for stricter key size requirements. For example, a

value of 3000 turns rsa2048 and dsa2048 keys into non-VS-NfD compliant keys.

--require-compliance
To check that data has been encrypted according to the rules of the current compliance mode, a

gpgsm user needs to evaluate the status lines. This is allows frontends to handle compliance check

in a more flexible way. However, for scripted use the required evaluation of the status-line

requires quite some effort; this option can be used instead to make sure that the gpgsm process

exits with a failure if the compliance rules are not fulfilled. Note that this option has currently an

effect only in "de-vs" mode.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

--ignore-cert-with-oid oid

Add oid to the list of OIDs to be checked while reading certificates from smartcards. The oid is

expected to be in dotted decimal form, like 2.5.29.3. This option may be used more than once. As

of now certificates with an extended key usage matching one of those OIDs are ignored during a

--learn-card operation and not imported. This option can help to keep the local key database clear

of unneeded certificates stored on smartcards.

--faked-system-time epoch

This option is only useful for testing; it sets the system time back or forth to epoch which is the

number of seconds elapsed since the year 1970. Alternatively epoch may be given as a full ISO

time string (e.g. "20070924T154812").

--with-ephemeral-keys
Include ephemeral flagged keys in the output of key listings. Note that they are included anyway if

the key specification for a listing is given as fingerprint or keygrip.

--compatibility-flags flags

Set compatibility flags to work around problems due to non-compliant certificates or data. The

flags are given as a comma separated list of flag names and are OR-ed together. The special flag

"none" clears the list and allows to start over with an empty list. To get a list of available flags the

sole word "help" can be used.

--debug-level level

Select the debug level for investigating problems. level may be a numeric value or by a keyword:

none
No debugging at all. A value of less than 1 may be used instead of the keyword.

basic
Some basic debug messages. A value between 1 and 2 may be used instead of the keyword.

advanced
More verbose debug messages. A value between 3 and 5 may be used instead of the keyword.

expert

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

Even more detailed messages. A value between 6 and 8 may be used instead of the keyword.

guru
All of the debug messages you can get. A value greater than 8 may be used instead of the

keyword. The creation of hash tracing files is only enabled if the keyword is used.

How these messages are mapped to the actual debugging flags is not specified and may change with

newer releases of this program. They are however carefully selected to best aid in debugging.

--debug flags

Set debug flags. All flags are or-ed and flags may be given in C syntax (e.g. 0x0042) or as a

comma separated list of flag names. To get a list of all supported flags the single word "help" can

be used. This option is only useful for debugging and the behavior may change at any time without

notice.

Note, that all flags set using this option may get overridden by --debug-level.

--debug-all
Same as --debug=0xffffffff

--debug-allow-core-dump
Usually gpgsm tries to avoid dumping core by well written code and by disabling core dumps for

security reasons. However, bugs are pretty durable beasts and to squash them it is sometimes

useful to have a core dump. This option enables core dumps unless the Bad Thing happened

before the option parsing.

--debug-no-chain-validation
This is actually not a debugging option but only useful as such. It lets gpgsm bypass all certificate

chain validation checks.

--debug-ignore-expiration
This is actually not a debugging option but only useful as such. It lets gpgsm ignore all notAfter

dates, this is used by the regression tests.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

--passphrase-fd n
Read the passphrase from file descriptor n. Only the first line will be read from file descriptor n. If

you use 0 for n, the passphrase will be read from STDIN. This can only be used if only one

passphrase is supplied.

Note that this passphrase is only used if the option --batch has also been given.

--pinentry-mode mode
Set the pinentry mode to mode. Allowed values for mode are:

default
Use the default of the agent, which is ask.

ask Force the use of the Pinentry.

cancel
Emulate use of Pinentry’s cancel button.

error
Return a Pinentry error (‘‘No Pinentry’’).

loopback
Redirect Pinentry queries to the caller. Note that in contrast to Pinentry the user is not

prompted again if he enters a bad password.

--request-origin origin

Tell gpgsm to assume that the operation ultimately originated at origin. Depending on the origin

certain restrictions are applied and the Pinentry may include an extra note on the origin. Supported

values for origin are: local which is the default, remote to indicate a remote origin or browser for

an operation requested by a web browser.

--no-common-certs-import
Suppress the import of common certificates on keybox creation.

All the long options may also be given in the configuration file after stripping off the two leading

dashes.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

HOW TO SPECIFY A USER ID
There are different ways to specify a user ID to GnuPG. Some of them are only valid for gpg others

are only good for gpgsm. Here is the entire list of ways to specify a key:

By key Id.
This format is deduced from the length of the string and its content or 0x prefix. The key Id of an

X.509 certificate are the low 64 bits of its SHA-1 fingerprint. The use of key Ids is just a shortcut,

for all automated processing the fingerprint should be used.

When using gpg an exclamation mark (!) may be appended to force using the specified primary or

secondary key and not to try and calculate which primary or secondary key to use.

The last four lines of the example give the key ID in their long form as internally used by the

OpenPGP protocol. You can see the long key ID using the option --with-colons.

234567C4

0F34E556E

01347A56A

0xAB123456

234AABBCC34567C4

0F323456784E56EAB

01AB3FED1347A5612

0x234AABBCC34567C4

By fingerprint.
This format is deduced from the length of the string and its content or the 0x prefix. Note, that

only the 20 byte version fingerprint is available with gpgsm (i.e. the SHA-1 hash of the certificate).

When using gpg an exclamation mark (!) may be appended to force using the specified primary or

secondary key and not to try and calculate which primary or secondary key to use.

The best way to specify a key Id is by using the fingerprint. This avoids any ambiguities in case

that there are duplicated key IDs.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

1234343434343434C434343434343434

123434343434343C3434343434343734349A3434

0E12343434343434343434EAB3484343434343434

0xE12343434343434343434EAB3484343434343434

gpgsm also accepts colons between each pair of hexadecimal digits because this is the de-facto

standard on how to present X.509 fingerprints. gpg also allows the use of the space separated SHA-1

fingerprint as printed by the key listing commands.

By exact match on OpenPGP user ID.
This is denoted by a leading equal sign. It does not make sense for X.509 certificates.

=Heinrich Heine <heinrichh@uni-duesseldorf.de>

By exact match on an email address.
This is indicated by enclosing the email address in the usual way with left and right angles.

<heinrichh@uni-duesseldorf.de>

By partial match on an email address.
This is indicated by prefixing the search string with an @. This uses a substring search but

considers only the mail address (i.e. inside the angle brackets).

@heinrichh

By exact match on the subject’s DN.
This is indicated by a leading slash, directly followed by the RFC-2253 encoded DN of the subject.

Note that you can’t use the string printed by gpgsm --list-keys because that one has been reordered

and modified for better readability; use --with-colons to print the raw (but standard escaped)

RFC-2253 string.

/CN=Heinrich Heine,O=Poets,L=Paris,C=FR

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

By exact match on the issuer’s DN.
This is indicated by a leading hash mark, directly followed by a slash and then directly followed by

the RFC-2253 encoded DN of the issuer. This should return the Root cert of the issuer. See note

above.

#/CN=Root Cert,O=Poets,L=Paris,C=FR

By exact match on serial number and issuer’s DN.
This is indicated by a hash mark, followed by the hexadecimal representation of the serial number,

then followed by a slash and the RFC-2253 encoded DN of the issuer. See note above.

#4F03/CN=Root Cert,O=Poets,L=Paris,C=FR

By keygrip.
This is indicated by an ampersand followed by the 40 hex digits of a keygrip. gpgsm prints the

keygrip when using the command --dump-cert.

&D75F22C3F86E355877348498CDC92BD21010A480

By substring match.
This is the default mode but applications may want to explicitly indicate this by putting the asterisk

in front. Match is not case sensitive.

Heine

*Heine

. and + prefixes
These prefixes are reserved for looking up mails anchored at the end and for a word search mode.

They are not yet implemented and using them is undefined.

Please note that we have reused the hash mark identifier which was used in old GnuPG versions to

indicate the so called local-id. It is not anymore used and there should be no conflict when used

with X.509 stuff.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

Using the RFC-2253 format of DNs has the drawback that it is not possible to map them back to

the original encoding, however we don’t have to do this because our key database stores this

encoding as meta data.

EXAMPLES
$ gpgsm -er goo@bar.net <plaintext >ciphertext

FILES
There are a few configuration files to control certain aspects of gpgsm’s operation. Unless noted, they

are expected in the current home directory (see: [option --homedir]).

gpgsm.conf
This is the standard configuration file read by gpgsm on startup. It may contain any valid long

option; the leading two dashes may not be entered and the option may not be abbreviated. This

default name may be changed on the command line (see: [gpgsm-option --options]). You should

backup this file.

common.conf
This is an optional configuration file read by gpgsm on startup. It may contain options pertaining

to all components of GnuPG. Its current main use is for the "use-keyboxd" option.

policies.txt
This is a list of allowed CA policies. This file should list the object identifiers of the policies line

by line. Empty lines and lines starting with a hash mark are ignored. Policies missing in this file

and not marked as critical in the certificate will print only a warning; certificates with policies

marked as critical and not listed in this file will fail the signature verification. You should backup

this file.

For example, to allow only the policy 2.289.9.9, the file should look like this:

Allowed policies

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

2.289.9.9

qualified.txt
This is the list of root certificates used for qualified certificates. They are defined as certificates

capable of creating legally binding signatures in the same way as handwritten signatures are.

Comments start with a hash mark and empty lines are ignored. Lines do have a length limit but

this is not a serious limitation as the format of the entries is fixed and checked by gpgsm: A non-

comment line starts with optional whitespace, followed by exactly 40 hex characters, white space

and a lowercased 2 letter country code. Additional data delimited with by a white space is current

ignored but might late be used for other purposes.

Note that even if a certificate is listed in this file, this does not mean that the certificate is trusted;

in general the certificates listed in this file need to be listed also in ‘trustlist.txt’. This is a global

file an installed in the sysconf directory (e.g. ‘/usr/local/etc/gnupg/qualified.txt’).

Every time gpgsm uses a certificate for signing or verification this file will be consulted to check

whether the certificate under question has ultimately been issued by one of these CAs. If this is the

case the user will be informed that the verified signature represents a legally binding (‘‘qualified’’)

signature. When creating a signature using such a certificate an extra prompt will be issued to let

the user confirm that such a legally binding signature shall really be created.

Because this software has not yet been approved for use with such certificates, appropriate notices

will be shown to indicate this fact.

help.txt
This is plain text file with a few help entries used with pinentry as well as a large list of help items

for gpg and gpgsm. The standard file has English help texts; to install localized versions use

filenames like ‘help.LL.txt’ with LL denoting the locale. GnuPG comes with a set of predefined

help files in the data directory (e.g. ‘/usr/local/share/gnupg/gnupg/help.de.txt’) and allows

overriding of any help item by help files stored in the system configuration directory (e.g.

‘/usr/local/etc/gnupg/help.de.txt’). For a reference of the help file’s syntax, please see the installed

‘help.txt’ file.

com-certs.pem
This file is a collection of common certificates used to populated a newly created ‘pubring.kbx’.

An administrator may replace this file with a custom one. The format is a concatenation of PEM

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

encoded X.509 certificates. This global file is installed in the data directory (e.g.

‘/usr/local/share/gnupg/com-certs.pem’).

Note that on larger installations, it is useful to put predefined files into the directory ‘/etc/skel/.gnupg/’

so that newly created users start up with a working configuration. For existing users a small helper

script is provided to create these files (see: [addgnupghome]).

For internal purposes gpgsm creates and maintains a few other files; they all live in the current home

directory (see: [option --homedir]). Only gpgsm may modify these files.

pubring.kbx
This a database file storing the certificates as well as meta information. For debugging purposes

the tool kbxutil may be used to show the internal structure of this file. You should backup this file.

random_seed
This content of this file is used to maintain the internal state of the random number generator

across invocations. The same file is used by other programs of this software too.

S.gpg-agent
If this file exists gpgsm will first try to connect to this socket for accessing gpg-agent before

starting a new gpg-agent instance. Under Windows this socket (which in reality be a plain file

describing a regular TCP listening port) is the standard way of connecting the gpg-agent.

SEE ALSO
gpg(1), gpg-agent(1)

The full documentation for this tool is maintained as a Texinfo manual. If GnuPG and the info

program are properly installed at your site, the command

info gnupg

should give you access to the complete manual including a menu structure and an index.

GPGSM(1) GNU Privacy Guard 2.4 GPGSM(1)

GnuPG 2.4.3 2023-12-14 GPGSM(1)

