
groff (7) Miscellaneous Information Manual groff (7)

Name
groff − GNU roff language reference

Description
groff is short for GNU roff , a free reimplementation of the AT&T device-independent troff typesetting sys-

tem. See roff (7) for a survey of and background on roff systems.

This document is intended as a reference. The primary groff manual, Groff: The GNU Implementation of

troff , by Trent A. Fisher and Werner Lemberg, is a better resource for learners, containing many examples

and much discussion. It is written in Texinfo; you can browse it interactively with “info groff”. Additional

formats, including plain text, HTML, DVI, and PDF, may be available in /usr/local/share/doc/groff−1.23.0.

groff is also a name for an extended dialect of the roff language. We use “roff” to denote features that are

universal, or nearly so, among implementations of this family. We apply the term “groff” to the language

documented here, the GNU implementation of the overall system, the project that develops that system, and

the command of that name.

GNU troff , installed on this system as troff (1), is the formatter: a program that reads device and font de-

scriptions (groff_font(5)), interprets the groff language expressed in text input files, and translates that input

into a device-independent output format (groff_out(5)) that is usually then post-processed by an output dri-

ver to produce PostScript, PDF, HTML, DVI, or terminal output.

Input format
Input to GNU troff is organized into lines separated by the Unix newline character (U+000A), and must be

in one of two character encodings it can recognize: IBM code page 1047 on EBCDIC systems, and

ISO Latin-1 (8859-1) otherwise. Use of ISO 646-1991:IRV (“US-ASCII”) or (equivalently) the “Basic

Latin” subset of ISO 10646 (“Unicode”) is recommended; see groff_char(7). The preconv(1) preprocessor

transforms other encodings, including UTF-8, to satisfy troff ’s requirements.

Syntax characters
Several input characters are syntactically significant to groff .

. A dot at the beginning of an input line marks it as a control line. It can also follow the .el and .nop re-

quests, and the condition in .if, .ie, and .while requests. The control character invokes requests and

calls macros by the name that follows it. The .cc request can change the control character.

' The neutral apostrophe is the no-break control character, recognized where the control character is. It

suppresses the (first) break implied by the .bp, .cf, .fi, .fl, .in, .nf, .rj, .sp, .ti, and .trf requests. The re-

quested operation takes effect at the next break. It makes .br nilpotent. The no-break control charac-

ter can be changed with the .c2 request. When formatted, “'” may be typeset as a typographical quota-

tion mark; use the \[aq] special character escape sequence to format a neutral apostrophe glyph.

" The neutral double quote can be used to enclose arguments to macros and strings, and is required if

those arguments contain space or tab characters. In the .ds, .ds1, .as, and .as1 requests, an initial neu-

tral double quote in the second argument is stripped off to allow embedding of leading spaces. To in-

clude a double quote inside a quoted argument, use the \[dq] special character escape sequence (which

also serves to typeset the glyph in text).

\ A backslash introduces an escape sequence. The escape character can be changed with the .ec request;

.eo disables escape sequence recognition. Use the \[rs] special character escape sequence to format a

backslash glyph, and \e to typeset the glyph of the current escape character.

( An opening parenthesis is special only in certain escape sequences; when recognized, it introduces an

argument of exactly two characters. groff offers the more flexible square bracket syntax.

[ An opening bracket is special only in certain escape sequences; when recognized, it introduces an ar-

gument (list) of any length, not including a closing bracket.

] A closing bracket is special only when an escape sequence using an opening bracket as an argument

delimiter is being interpreted. It ends the argument (list).

Additionally, the Control+A character (U+0001) in text is interpreted as a leader (see below).

groff 1.23.0 2 July 2023 1



groff (7) Miscellaneous Information Manual groff (7)

Horizontal white space characters are significant to groff, but trailing spaces on text lines are ignored.

space Space characters separate arguments in request invocations, macro calls, and string interpolations.

In text, they separate words. Multiple adjacent space characters in text cause groff to attempt

end-of-sentence detection on the preceding word (and trailing punctuation). The amount of space

between words and sentences is controlled by the .ss request. When filling is enabled (the de-

fault), a line may be broken at a space. When adjustment is enabled (the default), inter-word

spaces are expanded until the output line reaches the configured length. An adjustable but non-

breaking space is available with \~. To get a space of fixed width, use one of the escape se-

quences ‘\ ’ (the escape character followed by a space), \0, \|, \^, or \h; see section “Escape se-

quences” below.

newline In text, a newline puts an inter-word space onto the output and, if filling is enabled, triggers end-

of-sentence recognition on the preceding text. See section “Line continuation” below.

tab A tab character in text causes the drawing position to advance to the next defined tab stop.

Tabs and leaders
The formatter interprets input horizontal tab characters (“tabs”) and Control+A characters (“leaders”) into

movements to the next tab stop. Tabs simply move to the next tab stop; leaders place enough periods to fill

the space. Tab stops are by default located every half inch measured from the drawing position correspond-

ing to the beginning of the input line; see section “Page geometry” of roff (7). Tabs and leaders do not

cause breaks and therefore do not interrupt filling. Tab stops can be configured with the ta request, and tab

and leader glyphs with the tc and lc requests, respectively.

Line continuation
When filling is enabled, input and output line breaks generally do not correspond. The roff language there-

fore distinguishes input and output line continuation.

A backslash \ immediately followed by a newline, sometimes discussed as \newline, suppresses the effects

of that newline on the input. The next input line thus retains the classification of its predecessor as a con-

trol or text line. \newline is useful for managing line lengths in the input during document maintenance;

you can break an input line in the middle of a request invocation, macro call, or escape sequence. Input line

continuation is invisible to the formatter, with two exceptions: the operator recognizes the new input line,

and the input line counter register .c is incremented.

The \c escape sequence continues an output line. Nothing on the input line after it is formatted. In contrast

to \newline, a line after \c is treated as a new input line, so a control character is recognized at its beginning.

The visual results depend on whether filling is enabled. An intervening control line that causes a break

overrides \c, flushing out the pending output line in the usual way. The register .int contains a positive

value if the last output line was continued with \c; this datum is associated with the environment.

Colors
groff supports color output with a variety of color spaces and up to 16 bits per channel. Some devices, par-

ticularly terminals, may be more limited. When color support is enabled, two colors are current at any

given time: the stroke color, with which glyphs, rules (lines), and geometric objects like circles and poly-

gons are drawn, and the fill color, which can be used to paint the interior of a closed geometric figure. The

color, defcolor, gcolor, and fcolor requests; \m and \M escape sequences; and .color, .m, and .M registers

exercise color support.

Each output device has a color named “default”, which cannot be redefined. A device’s default stroke and

fill colors are not necessarily the same. For the dvi, html, pdf, ps, and xhtml output devices, troff auto-

matically loads a macro file defining many color names at startup. By the same mechanism, the devices

supported by grotty(1) recognize the eight standard ISO 6429/ECMA-48 color names (also known vulgarly

as “ANSI colors”).

Measurements
Numeric parameters that specify measurements are expressed as integers or decimal fractions with an op-

tional scaling unit suffixed. A scaling unit is a letter that immediately follows the last digit of a number.

Digits after the decimal point are optional.

groff 1.23.0 2 July 2023 2



groff (7) Miscellaneous Information Manual groff (7)

Measurements are scaled by the scaling unit and stored internally (with any fractional part discarded) in ba-

sic units. The device resolution can therefore be obtained by storing a value of “1i” to a register. The only

constraint on the basic unit is that it is at least as small as any other unit.

u Basic unit.

i Inch; defined as 2.54 centimeters.

c Centimeter.

p Point; a typesetter’s unit used for measuring type size. There are 72 points to an inch.

P Pica; another typesetter’s unit. There are 6 picas to an inch and 12 points to a pica.

s, z Scaled points and multiplication by the output device’s sizescale parameter, respectively.

f Multiplication by 65,536; scales decimal fractions in the interval [0, 1] to 16-bit unsigned integers.

The magnitudes of other scaling units depend on the text formatting parameters in effect.

m Em; an em is equal to the current type size in points.

n En; an en is one-half em.

v Vee; distance between text baselines.

M Hundredth of an em.

Motion quanta
An output device’s basic unit u is not necessarily its smallest addressable length; u can be smaller to avoid

problems with integer roundoff. The minimum distances that a device can work with in the horizontal and

vertical directions are termed its motion quanta, stored in the .H and .V registers, respectively. Measure-

ments are rounded to applicable motion quanta. Half-quantum fractions round toward zero.

Default units
A general-purpose register (one created or updated with the nr request; see section “Registers” below) is

implicitly dimensionless, or reckoned in basic units if interpreted in a measurement context. But it is con-

venient for many requests and escape sequences to infer a scaling unit for an argument if none is specified.

An explicit scaling unit (not after a closing parenthesis) can override an undesirable default. Effectively,

the default unit is suffixed to the expression if a scaling unit is not already present. GNU troff ’s use of inte-

ger arithmetic should also be kept in mind; see below.

Numeric expressions
A numeric expression evaluates to an integer. The following operators are recognized.

+ addition

− subtraction

* multiplication

/ truncating division

% modulus

unary + assertion, motion, incrementation

unary − negation, motion, decrementation

; scaling

>? maximum

<? minimum

< less than

> greater than

<= less than or equal

>= greater than or equal

= equal

== equal

& logical conjunction (“and”)

: logical disjunction (“or”)

! logical complementation (“not”)

( ) precedence

| boundary-relative motion

groff 1.23.0 2 July 2023 3



groff (7) Miscellaneous Information Manual groff (7)

troff provides a set of mathematical and logical operators familiar to programmers—as well as some un-

usual ones—but supports only integer arithmetic. (Provision is made for interpreting and reporting decimal

fractions in certain cases.) The internal data type used for computing results is usually a 32-bit signed inte-

ger, which suffices to represent magnitudes within a range of ±2 billion. (If that’s not enough, see

groff_tmac(5) for the 62bit.tmac macro package.)

Arithmetic infix operators perform a function on the numeric expressions to their left and right; they are +
(addition), − (subtraction), * (multiplication), / (truncating division), and % (modulus). Truncating divi-

sion rounds to the integer nearer to zero, no matter how large the fractional portion. Overflow and division

(or modulus) by zero are errors and abort evaluation of a numeric expression.

Arithmetic unary operators operate on the numeric expression to their right; they are − (negation) and + (as-

sertion—for completeness; it does nothing). The unary minus must often be used with parentheses to avoid

confusion with the decrementation operator, discussed below.

The sign of the modulus of operands of mixed signs is determined by the sign of the first. Division and

modulus operators satisfy the following property: given a dividend a and a divisor b, a quotient q formed

by “(a / b)” and a remainder r by “(a % b)”, then qb + r = a.

GNU troff ’s scaling operator, used with parentheses as (c;e), evaluates a numeric expression e using c as

the default scaling unit. If c is omitted, scaling units are ignored in the evaluation of e. GNU troff also

provides a pair of operators to compute the extrema of two operands: >? (maximum) and <? (minimum).

Comparison operators comprise < (less than), > (greater than), <= (less than or equal), >= (greater than or

equal), and = (equal). == is a synonym for =. When evaluated, a comparison is replaced with “0” if it is

false and “1” if true. In the roff language, positive values are true, others false.

We can operate on truth values with the logical operators & (logical conjunction or “and”) and : (logical

disjunction or “or”). They evaluate as comparison operators do. A logical complementation (“not”) opera-

tor, !, works only within “if”, “ie”, and “while” requests. Furthermore, ! is recognized only at the begin-

ning of a numeric expression not contained by another numeric expression. In other words, it must be the

“outermost” operator. Including it elsewhere in the expression produces a warning in the “number” cate-

gory (see troff (1)), and its expression evaluates false. This unfortunate limitation maintains compatibility

with AT&T troff . Test a numeric expression for falsity by comparing it to a false value.

The roff language has no operator precedence: expressions are evaluated strictly from left to right, in con-

trast to schoolhouse arithmetic. Use parentheses ( ) to impose a desired precedence upon subexpressions.

For many requests and escape sequences that cause motion on the page, the unary operators + and − work

differently when leading a numeric expression. They then indicate a motion relative to the drawing posi-

tion: positive is down in vertical contexts, right in horizontal ones.

+ and − are also treated differently by the following requests and escape sequences: bp, in, ll, pl, pn, po,

ps, pvs, rt, ti, \H, \R, and \s. Here, leading plus and minus signs serve as incrementation and decrementa-

tion operators, respectively. To neg ate an expression, subtract it from zero or include the unary minus in

parentheses with its argument.

A leading operator indicates a motion relative not to the drawing position but to a boundary. For horizon-

tal motions, the measurement specifies a distance relative to a drawing position corresponding to the begin-

ning of the input line. By default, tab stops reckon movements in this way. Most escape sequences do not;

tells them to do so. For vertical motions, the operator specifies a distance from the first text baseline on

the page or in the current diversion, using the current vertical spacing.

The \B escape sequence tests its argument for validity as a numeric expression.

A register interpolated as an operand in a numeric expression must have an Arabic format; luckily, this is

the default.

Due to the way arguments are parsed, spaces are not allowed in numeric expressions unless the (sub)ex-

pression containing them is surrounded by parentheses.

groff 1.23.0 2 July 2023 4



groff (7) Miscellaneous Information Manual groff (7)

Identifiers
An identifier labels a GNU troff datum such as a register, name (macro, string, or diversion), typeface,

color, special character, character class, environment, or stream. Valid identifiers consist of one or more or-

dinary characters. An ordinary character is an input character that is not the escape character, a leader, tab,

newline, or invalid as GNU troff input.

Invalid input characters are subset of control characters (from the sets “C0 Controls” and “C1 Controls” as

Unicode describes them). When troff encounters one in an identifier, it produces a warning in category

“input” (see section “Warnings” in troff (1)). They are removed during interpretation: an identifier “foo”,

followed by an invalid character and then “bar”, is processed as “foobar”.

On a machine using the ISO 646, 8859, or 10646 character encodings, invalid input characters are 0x00,

0x08, 0x0B, 0x0D–0x1F, and 0x80–0x9F. On an EBCDIC host, they are 0x00–0x01, 0x08, 0x09, 0x0B,

0x0D–0x14, 0x17–0x1F, and 0x30–0x3F. Some of these code points are used by troff internally, making it

non-trivial to extend the program to accept UTF-8 or other encodings that use characters from these ranges.

An identifier with a closing bracket (“]”) in its name can’t be accessed with bracket-form escape sequences

that expect an identifier as a parameter. Similarly, the identifier “(” can’t be interpolated except with

bracket forms.

If you begin a macro, string, or diversion name with either of the characters “[” or “]”, you foreclose use of

the refer(1) preprocessor, which recognizes “.[” and “.]” as bibliographic reference delimiters.

The escape sequence \A tests its argument for validity as an identifier.

How GNU troff handles the interpretation of an undefined identifier depends on the context. There is no

way to inv oke an undefined request; such syntax is interpreted as a macro call instead. If the identifier is in-

terpreted as a string, macro, or diversion, troff emits a warning in category “mac”, defines it as empty, and

interpolates nothing. If the identifier is interpreted as a register, troff emits a warning in category “reg”,

initializes it to zero, and interpolates that value. See section “Warnings” in troff (1), and subsection “Inter-

polating registers” and section “Strings” below. Attempting to use an undefined typeface, style, special

character, color, character class, environment, or stream generally provokes an error diagnostic.

Identifiers for requests, macros, strings, and diversions share one name space; special characters and char-

acter classes another. No other object types do.

Control characters
Control characters are recognized only at the beginning of an input line, or at the beginning of the branch of

a control structure request; see section “Control structures” below.

A few requests cause a break implicitly; use the no-break control character to prevent the break. Break sup-

pression is its sole behavioral distinction. Employing the no-break control character to invoke requests that

don’t cause breaks is harmless but poor style.

The control character “.” and the no-break control character “ ' ” can be changed with the cc and c2 re-

quests, respectively. Within a macro definition, register .br indicates the control character used to call it.

Invoking requests
A control character is optionally followed by tabs and/or spaces and then an identifier naming a request or

macro. The invocation of an unrecognized request is interpreted as a macro call. Defining a macro with the

same name as a request replaces the request. Deleting a request name with the rm request makes it un-

available. The als request can alias requests, permitting them to be wrapped or non-destructively replaced.

See section “Strings” below.

There is no inherent limit on argument length or quantity. Most requests take one or more arguments, and

ignore any they do not expect. A request may be separated from its arguments by tabs or spaces, but only

spaces can separate an argument from its successor. Only one between arguments is necessary; any excess

is ignored. GNU troff does not allow tabs for argument separation.

Generally, a space within a request argument is not relevant, not meaningful, or is supported by bespoke

provisions, as with the tl request’s delimiters. Some requests, like ds, interpret the remainder of the control

line as a single argument. See section “Strings” below.

groff 1.23.0 2 July 2023 5



groff (7) Miscellaneous Information Manual groff (7)

Spaces and tabs immediately after a control character are ignored. Commonly, authors structure the source

of documents or macro files with them.

Calling macros
If a macro of the desired name does not exist when called, it is created, assigned an empty definition, and a

warning in category “mac” is emitted. Calling an undefined macro does end a macro definition naming it

as its end macro (see section “Writing macros” below).

To embed spaces within a macro argument, enclose the argument in neutral double quotes ‘ " ’. Horizontal

motion escape sequences are sometimes a better choice for arguments to be formatted as text.

The foregoing raises the question of how to embed neutral double quotes or backslashes in macro argu-

ments when those characters are desired as literals. In GNU troff , the special character escape sequence

\[rs] produces a backslash and \[dq] a neutral double quote.

In GNU troff ’s AT&T compatibility mode, these characters remain available as \(rs and \(dq, respectively.

AT&T troff did not consistently define these special characters, but its descendants can be made to support

them. See groff_font(5). If ev en that is not feasible, see the “Calling Macros” section of the groff Te xinfo

manual for the complex macro argument quoting rules of AT&T troff .

Using escape sequences
Whereas requests must occur on control lines, escape sequences can occur intermixed with text and may

appear in arguments to requests, macros, and other escape sequences. An escape sequence is introduced by

the escape character, a backslash \. The next character selects the escape’s function.

Escape sequences vary in length. Some take an argument, and of those, some have different syntactical

forms for a one-character, two-character, or arbitrary-length argument. Others accept only an arbitrary-

length argument. In the former scheme, a one-character argument follows the function character immedi-

ately, an opening parenthesis “(” introduces a two-character argument (no closing parenthesis is used), and

an argument of arbitrary length is enclosed in brackets “[]”. In the latter scheme, the user selects a delim-

iter character. A few escape sequences are idiosyncratic, and support both of the foregoing conventions

( \s), designate their own termination sequence ( \?), consume input until the next newline ( \!, \", \#), or

support an additional modifier character ( \s again, and \n).

If an escape character is followed by a character that does not identify a defined operation, the escape char-

acter is ignored (producing a diagnostic of the “escape” warning category, which is not enabled by default)

and the following character is processed normally.

Escape sequence interpolation is of higher precedence than escape sequence argument interpretation. This

rule affords flexibility in using escape sequences to construct parameters to other escape sequences.

The escape character can be interpolated (\e). Requests permit the escape mechanism to be deactivated (eo)

and restored, or the escape character changed (ec), and to save and restore it (ecs and ecr).

Delimiters
Some escape sequences that require parameters use delimiters. The neutral apostrophe ' is a popular choice

and shown in this document. The neutral double quote " is also commonly seen. Letters, numerals, and

leaders can be used. Punctuation characters are likely better choices, except for those defined as infix oper-

ators in numeric expressions; see below.

The following escape sequences don’t take arguments and thus are allowed as delimiters: \space, \%, \|, \^,

\{, \}, \', \`, \−, \_, \!, \?, \), \/, \,, \&, \:, \~, \0, \a, \c, \d, \e, \E, \p, \r, \t, and \u. Howev er, using them this

way is discouraged; they can make the input confusing to read.

A few escape sequences, \A, \b, \o, \w, \X, and \Z, accept a newline as a delimiter. Newlines that serve as

delimiters continue to be recognized as input line terminators. Use of newlines as delimiters in escape se-

quences is also discouraged.

Finally, the escape sequences \D, \h, \H, \l, \L, \N, \R, \s, \S, \v, and \x prohibit many delimiters.

• the numerals 0–9 and the decimal point “.”

groff 1.23.0 2 July 2023 6



groff (7) Miscellaneous Information Manual groff (7)

• the (single-character) operators +−/*%<>=&:()

• any escape sequences other than \%, \:, \{, \}, \', \`, \−, \_, \!, \/, \c, \e, and \p

Delimiter syntax is complex and flexible primarily for historical reasons; the foregoing restrictions need be

kept in mind mainly when using groff in AT&T compatibility mode. GNU troff keeps track of the nesting

depth of escape sequence interpolations, so the only characters you need to avoid using as delimiters are

those that appear in the arguments you input, not any that result from interpolation. Typically, ' works fine.

See section “Implementation differences” in groff_diff (7).

Dummy characters
As discussed in roff (7), the first character on an input line is treated specially. Further, formatting a glyph

has many consequences on formatter state (see section “Environments” below). Occasionally, we want to

escape this context or embrace some of those consequences without actually rendering a glyph to the out-

put. \& interpolates a dummy character, which is constitutive of output but invisible. Its presence alters the

interpretation context of a subsequent input character, and enjoys several applications: preventing the inser-

tion of extra space after an end-of-sentence character, preventing interpretation of a control character at the

beginning of an input line, preventing kerning between two glyphs, and permitting the tr request to remap a

character to “nothing”. \) works as \& does, except that it does not cancel a pending end-of-sentence state.

Control structures
groff has “if” and “while” control structures like other languages. However, the syntax for grouping multi-

ple input lines in the branches or bodies of these structures is unusual.

They hav e a common form: the request name is (except for .el “else”) followed by a conditional expression

cond-expr; the remainder of the line, anything, is interpreted as if it were an input line. Any quantity of

spaces between arguments to requests serves only to separate them; leading spaces in anything are there-

fore not seen. anything effectively cannot be omitted; if cond-expr is true and anything is empty, the new-

line at the end of the control line is interpreted as a blank line (and therefore a blank text line).

It is frequently desirable for a control structure to govern more than one request, macro call, or text line, or

a combination of the foregoing. The opening and closing brace escape sequences \{ and \} perform such

grouping. Brace escape sequences outside of control structures have no meaning and produce no output.

\{ should appear (after optional spaces and tabs) immediately subsequent to the request’s conditional ex-

pression. \} should appear on a line with other occurrences of itself as necessary to match \{ sequences. It

can be preceded by a control character, spaces, and tabs. Input after any quantity of \} sequences on the

same line is processed only if all the preceding conditions to which they correspond are true. Furthermore,

a \} closing the body of a .while request must be the last such escape sequence on an input line.

Conditional expressions
The .if, .ie, and .while requests test the truth values of numeric expressions. They also support several addi-

tional Boolean operators; the members of this expanded class are termed conditional expressions; their

truth values are as shown below.

cond-expr. . . . . .is true if. . .

's1's2' s1 produces the same formatted output as s2.

c g a glyph g is available.

d m a string, macro, diversion, or request m is defined.

e the current page number is even.

F f a font named f is available.

m c a color named c is defined.

n the formatter is in nroff mode.

o the current page number is odd.

r n a register named n is defined.

S s a font style named s is available.

t the formatter is in troff mode.

v n/a (historical artifact; always false).

groff 1.23.0 2 July 2023 7



groff (7) Miscellaneous Information Manual groff (7)

If the first argument to an .if, .ie, or .while request begins with a non-alphanumeric character apart from !
(see below); it performs an output comparison test. Shown first in the table above, the output comparison

operator interpolates a true value if formatting its comparands s1 and s2 produces the same output com-

mands. Other delimiters can be used in place of the neutral apostrophes. troff formats s1 and s2 in sepa-

rate environments; after the comparison, the resulting data are discarded. The resulting glyph properties,

including font family, style, size, and slant, must match, but not necessarily the requests and/or escape se-

quences used to obtain them. Motions must match in orientation and magnitude to within the applicable

horizontal or vertical motion quantum of the device, after rounding.

Surround the comparands with \? to avoid formatting them; this causes them to be compared character by

character, as with string comparisons in other programming languages. Since comparands protected with \?
are read in copy mode, they need not even be valid groff syntax. The escape character is still lexically rec-

ognized, however, and consumes the next character.

The above operators can’t be combined with most others, but a leading “!”, not followed immediately by

spaces or tabs, complements an expression. Spaces and tabs are optional immediately after the “c”, “d”,

“F”, “m”, “r”, and “S” operators, but right after “!”, they end the predicate and the conditional evaluates

true. (This bizarre behavior maintains compatibility with AT&T troff .)

Syntax reference conventions
In the following request and escape sequence specifications, most argument names were chosen to be de-

scriptive. A few denotations may require introduction.

c denotes a single input character.

font a font either specified as a font name or a numeric mounting position.

anything all characters up to the end of the line, to the ending delimiter for the escape se-

quence, or within \{ and \}. Escape sequences may generally be used freely in any-

thing, except when it is read in copy mode.

message is a character sequence to be emitted on the standard error stream. Special character

escape sequences are not interpreted.

n is a numeric expression that evaluates to a non-negative integer.

npl is a numeric expression constituting a count of subsequent productive input lines; that

is, those that directly produce formatted output. Te xt lines produce output, as do con-

trol lines containing requests like .tl or escape sequences like \D. Macro calls are not

themselves productive, but their interpolated contents can be.

±N is a numeric expression with a meaning dependent on its sign.

If a numeric expression presented as ±N starts with a ‘+’ sign, an increment in the amount of of N is ap-

plied to the value applicable to the request or escape sequence. If it starts with a ‘−’ sign, a decrement of

magnitude N is applied instead. Without a sign, N replaces any existing value. A leading minus sign in N

is always interpreted as a decrementation operator, not an algebraic sign. To assign a register a negative

value or the negated value of another register, enclose it with its operand in parentheses or subtract it from

zero. If a prior value does not exist (the register was undefined), an increment or decrement is applied as if

to 0.

Request short reference
Not all details of request behavior are outlined here. See the groff Te xinfo manual or, for features new to

GNU troff , groff_diff (7).

.ab Abort processing; exit with failure status.

.ab message

Abort processing; write message to the standard error stream and exit with failure status.

.ad Enable output line alignment and adjustment using the mode stored in \n[.j].

.ad c Enable output line alignment and adjustment in mode c (c=b,c,l,n,r). Sets \n[.j].

.af register c

Assign format c to register, where c is “i”, “I”, “a”, “A”, or a sequence of decimal digits

whose quantity denotes the minimum width in digits to be used when the register is interpo-

lated. “i” and “a” indicate Roman numerals and basic Latin alphabetics, respectively, in the

lettercase specified. The default is 0.

groff 1.23.0 2 July 2023 8



groff (7) Miscellaneous Information Manual groff (7)

.aln new old

Create alias (additional name) new for existing register named old .

.als new old

Create alias (additional name) new for existing request, string, macro, or diversion old .

.am macro

Append to macro until .. is encountered.

.am macro end

Append to macro until .end is called.

.am1 macro

Same as .am but with compatibility mode switched off during macro expansion.

.am1 macro end

Same as .am but with compatibility mode switched off during macro expansion.

.ami macro

Append to a macro whose name is contained in the string macro until .. is encountered.

.ami macro end

Append to a macro indirectly. macro and end are strings whose contents are interpolated for

the macro name and the end macro, respectively.

.ami1 macro

Same as .ami but with compatibility mode switched off during macro expansion.

.ami1 macro end

Same as .ami but with compatibility mode switched off during macro expansion.

.as name

Create string name with empty contents; no operation if name already exists.

.as name contents

Append contents to string name.

.as1 string

.as1 string contents

As .as, but with compatibility mode disabled when contents interpolated.

.asciify diversion

Unformat ASCII characters, spaces, and some escape sequences in diversion.

.backtrace
Write the state of the input stack to the standard error stream. See the −b option of groff (1).

.bd font Stop emboldening font font.

.bd font n

Embolden font by overstriking its glyphs offset by n−1 units. See register .b.

.bd special-font font

Stop emboldening special-font when font is selected.

.bd special-font font n

Embolden special-font, overstriking its glyphs offset by n−1 units when font is selected. See

register .b.

.blm Unset blank line macro (trap). Restore default handling of blank lines.

.blm name

Set blank line macro (trap) to name.

.box Stop directing output to current diversion; any pending output line is discarded.

.box name

Direct output to diversion name, omitting a partially collected line.

.boxa Stop appending output to current diversion; any pending output line is discarded.

.boxa name

Append output to diversion name, omitting a partially collected line.

.bp Break page and start a new one.

.bp ±N Break page, starting a new one numbered ±N .

.br Break output line.

groff 1.23.0 2 July 2023 9



groff (7) Miscellaneous Information Manual groff (7)

.brp Break output line; adjust if applicable.

.break Break out of a while loop.

.c2 Reset no-break control character to “'”.

.c2 o Recognize ordinary character o as no-break control character.

.cc Reset control character to ‘.’.

.cc o Recognize ordinary character o as the control character.

.ce Break, center the output of the next productive input line without filling, and break again.

.ce npl Break, center the output of the next npl productive input lines without filling, then break again.

If npl ≤ 0, stop centering.

.cf file Copy contents of file without formatting to the (top-level) diversion.

.cflags n c1 c2 . . .

Assign properties encoded by n to characters c1, c2, and so on.

.ch name

Unplant page location trap name.

.ch name vpos

Change page location trap name planted by .wh by moving its location to vpos (default scaling

unit v).

.char c contents

Define ordinary or special character c as contents.

.chop object

Remove the last character from the macro, string, or diversion named object.

.class name c1 c2 . . .

Define a (character) class name comprising the characters or range expressions c1, c2, and so

on.

.close stream

Close the stream.

.color Enable output of color-related device-independent output commands.

.color n

If n is zero, disable output of color-related device-independent output commands; otherwise,

enable them.

.composite from to

Map glyph name from to glyph name to while constructing a composite glyph name.

.continue
Finish the current iteration of a while loop.

.cp Enable compatibility mode.

.cp n If n is zero, disable compatibility mode, otherwise enable it.

.cs font n m

Set constant character width mode for font to n/36 ems with em m.

.cu Continuously underline the output of the next productive input line.

.cu npl Continuously underline the output of the next npl productive input lines. If npl=0, stop contin-

uously underlining.

.da Stop appending output to current diversion.

.da name

Append output to diversion name.

.de macro

Define or redefine macro until “..” occurs at the start of a control line in the current conditional

block.

.de macro end

Define or redefine macro until end is invoked or called at the start of a control line in the cur-

rent conditional block.

.de1 macro

As .de, but disable compatibility mode during macro expansion.

groff 1.23.0 2 July 2023 10



groff (7) Miscellaneous Information Manual groff (7)

.de1 macro end

As “.de macro end”, but disable compatibility mode during macro expansion.

.defcolor ident scheme color-component . . .

Define a color named ident. scheme identifies a color space and determines the number of re-

quired color-components; it must be one of “rgb” (three components), “cmy” (three), “cmyk”

(four), or “gray” (one). “grey” is accepted as a synonym of “gray”. The color components

can be encoded as a single hexadecimal value starting with # or ##. The former indicates that

each component is in the range 0–255 (0–FF), the latter the range 0–65,535 (0–FFFF). Alter-

natively, each color component can be specified as a decimal fraction in the range 0–1, inter-

preted using a default scaling unit of “f”, which multiplies its value by 65,536 (but clamps it at

65,535). Each output device has a color named “default”, which cannot be redefined. A de-

vice’s default stroke and fill colors are not necessarily the same.

.dei macro

Define macro indirectly. As .de, but use interpolation of string macro as the name of the de-

fined macro.

.dei macro end

Define macro indirectly. As .de, but use interpolations of strings macro and end as the names

of the defined and end macros.

.dei1 macro

As .dei, but disable compatibility mode during macro expansion.

.dei1 macro end

As .dei macro end, but disable compatibility mode during macro expansion.

.device anything

Write anything, read in copy mode, to troff output as a device control command. An initial

neutral double quote is stripped to allow embedding of leading spaces.

.devicem name

Write contents of macro or string name to troff output as a device control command.

.di Stop directing output to current diversion.

.di name

Direct output to diversion name.

.do name . . .

Interpret the string, request, diversion, or macro name (along with any arguments) with com-

patibility mode disabled. Compatibility mode is restored (only if it was active) when the

expansion of name is interpreted.

.ds name

Create empty string name.

.ds name contents

Create a string name containing contents.

.ds1 name

.ds1 name contents

As .ds, but with compatibility mode disabled when contents interpolated.

.dt Clear diversion trap.

.dt vertical-position name

Set the diversion trap to macro name at vertical-position (default scaling unit v).

.ec Recognize \ as the escape character.

.ec o Recognize ordinary character o as the escape character.

.ecr Restore escape character saved with .ecs.

.ecs Save the escape character.

.el anything

Interpret anything as if it were an input line if the conditional expression of the corresponding

.ie request was false.

.em name

Call macro name after the end of input.

groff 1.23.0 2 July 2023 11



groff (7) Miscellaneous Information Manual groff (7)

.eo Disable the escape mechanism in interpretation mode.

.ev Pop environment stack, returning to previous one.

.ev env Push current environment onto stack and switch to env.

.evc env Copy environment env to the current one.

.ex Exit with successful status.

.fam Set default font family to previous value.

.fam name

Set default font family to name.

.fc Disable field mechanism.

.fc a Set field delimiter to a and pad glyph to space.

.fc a b Set field delimiter to a and pad glyph to b.

.fchar c contents

Define fallback character (or glyph) c as contents.

.fcolor Restore previous fill color.

.fcolor c

Set fill color to c.

.fi Enable filling of output lines; a pending output line is broken. Sets \n[.u].

.fl Flush output buffer.

.fp pos id

Mount font with font description file name id at non-negative position n.

.fp pos id font-description-file-name

Mount font with font-description-file-name as name id at non-negative position n.

.fschar f c anything

Define fallback character (or glyph) c for font f as string anything.

.fspecial font

Reset list of special fonts for font to be empty.

.fspecial font s1 s2 . . .

When the current font is font, then the fonts s1, s2, . . .  are special.

.ft

.ft P Select previous font mounting position (abstract style or font); same as \f[] or \fP.

.ft font Select typeface font, which can be a mounting position, abstract style, or font name; same as

\f[font] escape sequence. font cannot be P.

.ftr font1 font2

Translate font1 to font2.

.fzoom font

.fzoom font 0
Stop magnifying font.

.fzoom font z

Set zoom factor for font to z (in thousandths; default: 1000).

.gcolor Restore previous stroke color.

.gcolor c

Set stroke color to c.

.hc Reset the hyphenation character to \% (the default).

.hc char Change the hyphenation character to char.

.hcode c1 code1 [c2 code2] . . .

Set the hyphenation code of character c1 to code1, that of c2 to code2, and so on.

.hla lang

Set the hyphenation language to lang.

.hlm n Set the maximum quantity of consecutive hyphenated lines to n.

.hpf pattern-file

Read hyphenation patterns from pattern-file.

.hpfa pattern-file

Append hyphenation patterns from pattern-file.

groff 1.23.0 2 July 2023 12



groff (7) Miscellaneous Information Manual groff (7)

.hpfcode a b [c d] . . .

Define mappings for character codes in hyphenation pattern files read with .hpf and .hpfa.

.hw word . . .

Define hyphenation overrides for each word; a hyphen “−” indicates a hyphenation point.

.hy Set automatic hyphenation mode to 1.

.hy 0 Disable automatic hyphenation; same as .nh.

.hy mode

Set automatic hyphenation mode to mode; see section “Hyphenation” below.

.hym Set the (right) hyphenation margin to 0 (the default).

.hym length

Set the (right) hyphenation margin to length (default scaling unit m).

.hys Set the hyphenation space to 0 (the default).

.hys hyphenation-space

Suppress automatic hyphenation in adjustment modes “b” or “n” if the line can be justified

with the addition of up to hyphenation-space to each inter-word space (default scaling unit m).

.ie cond-expr anything

If cond-expr is true, interpret anything as if it were an input line, otherwise skip to a corre-

sponding .el request.

.if cond-expr anything

If cond-expr is true, then interpret anything as if it were an input line.

.ig Ignore input (except for side effects of \R on auto-incrementing registers) until “..” occurs at

the start of a control line in the current conditional block.

.ig end Ignore input (except for side effects of \R on auto-incrementing registers) until .end is called at

the start of a control line in the current conditional block.

.in Set indentation amount to previous value.

.in ±N Set indentation to ±N (default scaling unit m).

.it Cancel any pending input line trap.

.it npl name

Set (or replace) an input line trap in the environment, calling macro name, after the next npl

productive input lines have been read. Lines interrupted with the \c escape sequence are

counted separately.

.itc Cancel any pending input line trap.

.itc npl name

As .it, except that input lines interrupted with the \c escape sequence are not counted.

.kern Enable pairwise kerning.

.kern n If n is zero, disable pairwise kerning, otherwise enable it.

.lc Unset leader repetition character.

.lc c Set leader repetition character to c (default: “.”).

.length reg anything

Compute the number of characters of anything and store the count in the register reg.

.linetabs
Enable line-tabs mode (calculate tab positions relative to beginning of output line).

.linetabs 0
Disable line-tabs mode.

.lf n Set number of next input line to n.

.lf n file Set number of next input line to n and input file name to file.

.lg m Set ligature mode to m (0 = disable, 1 = enable, 2 = enable for two-letter ligatures only).

.ll Set line length to previous value. Does not affect a pending output line.

.ll ±N Set line length to ±N (default length 6.5i, default scaling unit m). Does not affect a pending

output line.

.lsm Unset the leading space macro (trap). Restore default handling of lines with leading spaces.

.lsm name

Set the leading space macro (trap) to name.

groff 1.23.0 2 July 2023 13



groff (7) Miscellaneous Information Manual groff (7)

.ls Change to the previous value of additional intra-line skip.

.ls n Set additional intra-line skip value to n, i.e., n−1 blank lines are inserted after each text output

line.

.lt Set length of title lines to previous value.

.lt ±N Set length of title lines (default length 6.5i, default scaling unit m).

.mc Cease writing margin character.

.mc c Begin writing margin character c to the right of each output line.

.mc c d Begin writing margin character c on each output line at distance d to the right of the right mar-

gin (default distance 10p, default scaling unit m).

.mk Mark vertical drawing position in an internal register; see .rt.

.mk register

Mark vertical drawing position in register.

.mso file As .so, except that file is sought in the tmac directories.

.msoquiet file

As .mso, but no warning is emitted if file does not exist.

.na Disable output line adjustment.

.ne Break page if distance to next page location trap is less than one vee.

.ne d Break page if distance to next page location trap is less than distance d (default scaling unit v).

.nf Disable filling of output lines; a pending output line is broken. Clears \n[.u].

.nh Disable automatic hyphenation; same as “.hy 0”.

.nm Deactivate output line numbering.

.nm ±N

.nm ±N m

.nm ±N m s

.nm ±N m s i

Activate output line numbering: number the next output line ±N, writing numbers every m

lines, with s numeral widths (\0) between the line number and the output (default 1), and in-

denting the line number by i numeral widths (default 0).

.nn Suppress numbering of the next output line to be numbered with nm.

.nn n Suppress numbering of the next n output lines to be numbered with nm. If n=0, cancel sup-

pression.

.nop anything

Interpret anything as if it were an input line.

.nr reg ±N

Define or update register reg with value N .

.nr reg ±N I

Define or update register reg with value N and auto-increment I .

.nroff Make the conditional expressions n true and t false.

.ns Enable no-space mode, ignoring .sp requests until a glyph or \D primitive is output. See .rs.

.nx Immediately jump to end of current file.

.nx file Stop formatting current file and begin reading file.

.open stream file

Open file for writing and associate the stream named stream with it. Unsafe request; disabled

by default.

.opena stream file

As .open, but append to file. Unsafe request; disabled by default.

.os Output vertical distance that was saved by the .sv request.

.output contents

Emit contents directly to intermediate output, allowing leading whitespace if string starts with

" (which is stripped off).

.pc Reset page number character to ‘%’.

.pc c Page number character.

groff 1.23.0 2 July 2023 14



groff (7) Miscellaneous Information Manual groff (7)

.pev Report the state of the current environment followed by that of all other environments to the

standard error stream.

.pi program

Pipe output to program (nroff only). Unsafe request; disabled by default.

.pl Set page length to default 11i. The current page length is stored in register .p.

.pl ±N Change page length to ±N (default scaling unit v).

.pm Report, to the standard error stream, the names and sizes in bytes of defined macros, strings,

and diversions.

.pn ±N Next page number N .

.pnr Write the names and contents of all defined registers to the standard error stream.

.po Change to previous page offset. The current page offset is available in register .o.

.po ±N Page offset N .

.ps Return to previous type size.

.ps ±N Set/increase/decrease the type size to/by N scaled points (a non-positive resulting type size is

set to 1 u); also see \s[±N].

.psbb file

Retrieve the bounding box of the PostScript image found in file, which must conform to

Adobe’s Document Structuring Conventions (DSC). See registers llx, lly, urx, ury.

.pso command-line

Execute command-line with popen(3) and interpolate its output. Unsafe request; disabled by

default.

.ptr Report names and positions of all page location traps to the standard error stream.

.pvs Change to previous post-vertical line spacing.

.pvs ±N Change post-vertical line spacing according to ±N (default scaling unit p).

.rchar c1 c2 . . .

Remove definition of each ordinary or special character c1, c2, . . .  defined by a .char, .fchar,

or .schar request.

.rd prompt

Read insertion.

.return Return from a macro.

.return anything

Return twice, namely from the macro at the current level and from the macro one level higher.

.rfschar f c1 c2 . . .

Remove the font-specific definitions of glyphs c1, c2, . . .  for font f .

.rj npl Break, right-align the output of the next productive input line without filling, then break again.

.rj npl Break, right-align the output of the next npl productive input lines without filling, then break

again. If npl ≤ 0, stop right-aligning.

.rm name

Remove request, macro, diversion, or string name.

.rn old new

Rename request, macro, diversion, or string old to new.

.rnn reg1 reg2

Rename register reg1 to reg2.

.rr ident Remove register ident.

.rs Restore spacing; disable no-space mode. See .ns.

.rt Return (upward only) to vertical position marked by .mk on the current page.

.rt N Return (upward only) to vertical position N (default scaling unit v).

.schar c contents

Define global fallback character (or glyph) c as contents.

.shc Reset the soft hyphen character to \[hy].

.shc c Set the soft hyphen character to c.

.shift n

In a macro definition, left-shift arguments by n positions.

groff 1.23.0 2 July 2023 15



groff (7) Miscellaneous Information Manual groff (7)

.sizes s1 s2 . . . sn [0]

Set available type sizes similarly to the sizes directive in a DESC file. Each si is interpreted in

units of scaled points (z).

.so file Replace the request’s control line with the contents of file, “sourcing” it.

.soquiet file

As .so, but no warning is emitted if file does not exist.

.sp Break and move the next text baseline down by one vee, or until springing a page location trap.

.sp dist Break and move the next text baseline down by dist, or until springing a page location trap (de-

fault scaling unit v). A negative dist will not reduce the position of the text baseline below

zero. Prefixing dist with the operator moves to a position relative to the page top for positive

N , and the bottom if N is negative; in all cases, one line height (vee) is added to dist. dist is

ignored inside a diversion.

.special
Reset global list of special fonts to be empty.

.special s1 s2 . . .

Fonts s1, s2, etc. are special and are searched for glyphs not in the current font.

.spreadwarn
Toggle the spread warning on and off (the default) without changing its value.

.spreadwarn N

Emit a break warning if the additional space inserted for each space between words in an ad-

justed output line is greater than or equal to N . A negative N is treated as 0. The default scal-

ing unit is m. At startup, .spreadwarn is inactive and N is 3 m.
.ss n Set minimal inter-word spacing to n 12ths of current font’s space width.

.ss n m As “.ss n”, and set additional inter-sentence space to m 12ths of current font’s space width.

.stringdown stringvar

Replace each byte in the string named stringvar with its lowercase version.

.stringup stringvar

Replace each byte in the string named stringvar with its uppercase version.

.sty n style

Associate abstract style with font position n.

.substring str start [end]

Replace the string named str with its substring bounded by the indices start and end , inclusive.

Negative indices count backwards from the end of the string.

.sv As .ne, but save 1 v for output with .os request.

.sv d As .ne, but save distance d for later output with .os request (default scaling unit v).

.sy command-line

Execute command-line with system(3). Unsafe request; disabled by default.

.ta n1 n2 . . . nn T r1 r2 . . . rn

Set tabs at positions n1, n2, . . ., nn, then set tabs at nn+m×rn+r1 through nn+m×rn+rn, where

m increments from 0, 1, 2, . . .  to the output line length. Each n argument can be prefixed with

a “+” to place the tab stop ni at a distance relative to the previous, n(i−1). Each argument

ni or ri can be suffixed with a letter to align text within the tab column bounded by tab stops

i and i+1; “L” for left-aligned (the default), “C” for centered, and “R” for right-aligned.

.tag

.taga Reserved for internal use.

.tc Unset tab repetition character.

.tc c Set tab repetition character to c (default: none).

.ti ±N Temporarily indent next output line (default scaling unit m).

.tkf font s1 n1 s2 n2

Enable track kerning for font.

.tl 'left'center'right'
Format three-part title.

groff 1.23.0 2 July 2023 16



groff (7) Miscellaneous Information Manual groff (7)

.tm message

Write message, followed by a newline, to the standard error stream.

.tm1 message

As .tm, but an initial neutral double quote in message is removed, allowing it to contain lead-

ing spaces.

.tmc message

As .tm1, without emitting a newline.

.tr abcd. . .

Translate ordinary or special characters a to b, c to d , and so on prior to output.

.trf file Transparently output the contents of file. Unlike .cf, inv alid input characters in file are re-

jected.

.trin abcd. . .

As .tr, except that .asciify ignores the translation when a diversion is interpolated.

.trnt abcd. . .

As .tr, except that translations are suppressed in the argument to \!.
.troff Make the conditional expressions t true and n false.

.uf font Set underline font used by .ul to font.

.ul Underline (italicize in troff mode) the output of the next productive input line.

.ul npl Underline (italicize in troff mode) the output of the next npl productive input line. If npl=0,

stop underlining.

.unformat diversion

Unformat space characters and tabs in diversion, preserving font information.

.vpt Enable vertical position traps.

.vpt 0 Disable vertical position traps.

.vs Change to previous vertical spacing.

.vs ±N Set vertical spacing to ±N (default scaling unit p).

.warn Enable all warning categories.

.warn 0 Disable all warning categories.

.warn n Enable warnings in categories whose codes sum to n; see troff (1).

.warnscale su

Set scaling unit used in certain warnings to su (one of u, i, c, p, or P; default: i).
.wh vpos Remove visible page location trap at vpos (default scaling unit v).

.wh vpos name

Plant macro name as page location trap at vpos (default scaling unit v), removing any visible

trap already there.

.while cond-expr anything

Repeatedly execute anything unless and until cond-expr evaluates false.

.write stream anything

Write anything to the stream named stream.

.writec stream anything

Similar to .write without emitting a final newline.

.writem stream xx

Write contents of macro or string xx to the stream named stream.

Escape sequence short reference
The escape sequences \", \#, \$, \*, \?, \a, \e, \n, \t, \g, \V, and \newline are interpreted even in copy mode.

\" Comment. Everything up to the end of the line is ignored.

\# Comment. Everything up to and including the next newline is ignored.

\*s Interpolate string with one-character name s.

\*(st Interpolate string with two-character name st.

\*[string]
Interpolate string with name string (of arbitrary length).

\*[string arg . . .]
Interpolate string with name string (of arbitrary length), taking arg . . .  as arguments.

groff 1.23.0 2 July 2023 17



groff (7) Miscellaneous Information Manual groff (7)

\$0 Interpolate name by which currently executing macro was invoked.

\$n Interpolate macro or string parameter numbered n (1 ≤ n ≤ 9).

\$(nn Interpolate macro or string parameter numbered nn (01 ≤ nn ≤ 99).

\$[nnn]
Interpolate macro or string parameter numbered nnn (nnn ≥ 1).

\$* Interpolate concatenation of all macro or string parameters, separated by spaces.

\$@ Interpolate concatenation of all macro or string parameters, with each surrounded by double

quotes and separated by spaces.

\$^ Interpolate concatenation of all macro or string parameters as if they were arguments to the .ds re-

quest.

\' is a synonym for \[aa], the acute accent special character.

\` is a synonym for \[ga], the grave accent special character.

\− is a synonym for \[−], the minus sign special character.

\_ is a synonym for \[ul], the underrule special character.

\% Control hyphenation.

\! Transparent line. The remainder of the input line is interpreted (1) when the current diversion is

read; or (2) if in the top-level div ersion, by the postprocessor (if any).

\?anything\?
Transparently embed anything, read in copy mode, in a diversion, or unformatted as an output

comparand in a conditional expression.

\space Move right one word space.

\~ Insert an unbreakable, adjustable space.

\0 Move right by the width of a numeral in the current font.

\| Move one-sixth em to the right on typesetters.

\^ Move one-twelfth em to the right on typesetters.

\& Interpolate a dummy character.

\) Interpolate a dummy character that is transparent to end-of-sentence recognition.

\/ Apply italic correction. Use between an immediately adjacent oblique glyph on the left and an up-

right glyph on the right.

\, Apply left italic correction. Use between an immediately adjacent upright glyph on the left and an

oblique glyph on the right.

\: Non-printing break point (similar to \%, but never produces a hyphen glyph).

\newline

Continue current input line on the next.

\{ Begin conditional input.

\} End conditional input.

\(gl Interpolate glyph with two-character name gl.

\[glyph]
Interpolate glyph with name glyph (of arbitrary length).

\[base-char comp . . .]
Interpolate composite glyph constructed from base-char and each component comp.

\[charnnn]
Interpolate glyph of eight-bit encoded character nnn, where 0 ≤ nnn ≤ 255.

\[unnnn[n[n]]]
Interpolate glyph of Unicode character with code point nnnn[n[n]] in uppercase hexadecimal.

\[ubase-char[_combining-component]. . .]
Interpolate composite glyph from Unicode character base-char and combining-components.

\a Interpolate a leader in copy mode.

\A'anything'
Interpolate 1 if anything is a valid identifier, and 0 otherwise.

\b'string'
Build bracket: pile a sequence of glyphs corresponding to each character in string vertically, and

center it vertically on the output line.

groff 1.23.0 2 July 2023 18



groff (7) Miscellaneous Information Manual groff (7)

\B'anything'
Interpolate 1 if anything is a valid numeric expression, and 0 otherwise.

\c Continue output line at next input line.

\C'glyph'
As \[glyph], but compatible with other troff implementations.

\d Move downward ½ em on typesetters.

\D'drawing-command'
See subsection “Drawing commands” below.

\e Interpolate the escape character.

\E As \e, but not interpreted in copy mode.

\fP Select previous font mounting position (abstract style or font); same as “.ft” or “.ft P”.

\fF Select font mounting position, abstract style, or font with one-character name or one-digit posi-

tion F . F cannot be P.

\f( ft Select font mounting position, abstract style, or font with two-character name or two-digit posi-

tion ft.

\f[ font]
Select font mounting position, abstract style, or font with arbitrarily long name or position font.

font cannot be P.

\f[] Select previous font mounting position (abstract style or font).

\F f Set default font family to that with one-character name f .

\F( fm Set default font family to that with two-character name fm.

\F[ fam]
Set default font family to that with arbitrarily long name fam.

\F[] Set default font family to previous value.

\gr Interpolate format of register with one-character name r.

\g(rg Interpolate format of register with two-character name rg.

\g[reg]
Interpolate format of register with arbitrarily long name reg.

\h'N'
Horizontally move the drawing position by N ems (or specified units); may be used. Positive

motion is rightward.

\H'N'
Set height of current font to N scaled points (or specified units).

\kr Mark horizontal position in one-character register name r.

\k(rg Mark horizontal position in two-character register name rg.

\k[reg]
Mark horizontal position in register with arbitrarily long name reg.

\l'N [c]'
Draw horizontal line of length N with character c (default: \[ru]; default scaling unit m).

\L'N [c]'
Draw vertical line of length N with character c (default: \[br]; default scaling unit v).

\mc Set stroke color to that with one-character name c.

\m(cl Set stroke color to that with two-character name cl.

\m[color]
Set stroke color to that with arbitrarily long name color.

\m[] Restore previous stroke color.

\Mc Set fill color to that with one-character name c.

\M(cl Set fill color to that with two-character name cl.

\M[color]
Set fill color to that with arbitrarily long name color.

\M[] Restore previous fill color.

groff 1.23.0 2 July 2023 19



groff (7) Miscellaneous Information Manual groff (7)

\nr Interpolate contents of register with one-character name r.

\n(rg Interpolate contents of register with two-character name rg.

\n[reg]
Interpolate contents of register with arbitrarily long name reg.

\N'n' Interpolate glyph with index n in the current font.

\o'abc. . .'
Overstrike centered glyphs of characters a, b, c, and so on.

\O0 At the outermost suppression level, disable emission of glyphs and geometric objects to the output

driver.

\O1 At the outermost suppression level, enable emission of glyphs and geometric objects to the output

driver.

\O2 At the outermost suppression level, enable glyph and geometric primitive emission to the output

driver and write to the standard error stream the page number, four bounding box registers enclos-

ing glyphs written since the previous \O escape sequence, the page offset, line length, image file

name (if any), horizontal and vertical device motion quanta, and input file name.

\O3 Begin a nested suppression level.

\O4 End a nested suppression level.

\O[5Pfile]
At the outermost suppression level, write the name file to the standard error stream at position P,

which must be one of l, r, c, or i.
\p Break output line at next word boundary; adjust if applicable.

\r Move “in reverse” (upward) 1 em.

\R'name ±N'
Set, increment, or decrement register name by N .

\s±N Set/increase/decrease the type size to/by N scaled points. N must be a single digit; 0 restores the

previous type size. (In compatibility mode only, a non-zero N must be in the range 4–39.) Other-

wise, as .ps request.

\s(±N

\s±(N
Set/increase/decrease the type size to/by N scaled points; N is a two-digit number ≥1. As .ps re-

quest.

\s[±N]
\s±[N]
\s'±N'
\s±'N'

Set/increase/decrease the type size to/by N scaled points. As .ps request.

\S'N'
Slant output glyphs by N degrees; the direction of text flow is positive.

\t Interpolate a tab in copy mode.

\u Move upward ½ em on typesetters.

\v'N'
Vertically move the drawing position by N vees (or specified units); may be used. Positive mo-

tion is downward.

\Ve Interpolate contents of environment variable with one-character name e.

\V(ev Interpolate contents of environment variable with two-character name ev.

\V[env]
Interpolate contents of environment variable with arbitrarily long name env.

\w'anything'
Interpolate width of anything, formatted in a dummy environment.

\x'N'
Increase vertical spacing of pending output line by N vees (or specified units; negative before,

positive after).

groff 1.23.0 2 July 2023 20



groff (7) Miscellaneous Information Manual groff (7)

\X'anything'
Write anything to troff output as a device control command. Within anything, the escape se-

quences \&, \), \%, and \: are ignored; \space and \~ are converted to single space characters; and

\\ has its escape character stripped. So that the basic Latin subset of the Unicode character set can

be reliably encoded in anything, the special character escape sequences \−, \[aq], \[dq], \[ga],
\[ha], \[rs], and \[ti] are mapped to basic Latin characters; see groff_char(7). For this transforma-

tion, character translations and special character definitions are ignored.

\Yn Write contents of macro or string n to troff output as a device control command.

\Y(nm Write contents of macro or string nm to troff output as a device control command.

\Y[name]
Write contents of macro or string name to troff output as a device control command.

\zc Format character c with zero width—without advancing the drawing position.

\Z'anything'
Save the drawing position, format anything, then restore it.

Drawing commands
Drawing commands direct the output device to render geometrical objects rather than glyphs. Specific de-

vices may support only a subset, or may feature additional ones; consult the man page for the output driver

in use. Terminal devices in particular implement almost none.

Rendering starts at the drawing position; when finished, the drawing position is left at the rightmost point of

the object, even for closed figures, except where noted. GNU troff draws stroked (outlined) objects with

the stroke color, and shades filled ones with the fill color. See section “Colors” above. Coordinates h and v

are horizontal and vertical motions relative to the drawing position or previous point in the command. The

default scaling unit for horizontal measurements (and diameters of circles) is m; for vertical ones, v.

Circles, ellipses, and polygons can be drawn stroked or filled. These are independent properties; if you

want a filled, stroked figure, you must draw the same figure twice using each drawing command. A filled

figure is always smaller than an outlined one because the former is drawn only within its defined area,

whereas strokes have a line thickness (set with \D't').

\D'~ h1 v1 . . . hn vn'
Draw B-spline to each point in sequence, leaving drawing position at (hn, vn).

\D'a hc vc h v'
Draw circular arc centered at (hc, vc) counterclockwise from the drawing position to a point (h, v)

relative to the center. (hc, vc) is adjusted to the point nearest the perpendicular bisector of the

arc’s chord.

\D'c d' Draw circle of diameter d with its leftmost point at the drawing position.

\D'C d'
As \D'C', but the circle is filled.

\D'e h v'
Draw ellipse of width h and height v with its leftmost point at the drawing position.

\D'E h v'
As \D'e', but the ellipse is filled.

\D'l h v'
Draw line from the drawing position to (h, v).

\D'p h1 v1 . . . hn vn'
Draw polygon with vertices at drawing position and each point in sequence. GNU troff closes the

polygon by drawing a line from (hn, vn) back to the initial drawing position. Afterward, the draw-

ing position is left at (hn, vn).

\D'P h1 v1 . . . hn vn'
As \D'p', but the polygon is filled.

\D't n' Set stroke thickness of geometric objects to to n basic units. A zero n selects the minimal sup-

ported thickness. A neg ative n selects a thickness proportional to the type size; this is the default.

groff 1.23.0 2 July 2023 21



groff (7) Miscellaneous Information Manual groff (7)

Device control commands
The .device and .devicem requests, and \X and \Y escape sequences, enable documents to pass information

directly to a postprocessor. These are useful for exercising device-specific capabilities that the groff lan-

guage does not abstract or generalize; such functions include the embedding of hyperlinks and image files.

Device-specific functions are documented in each output driver’s man page.

Strings
groff supports strings primarily for user convenience. Conventionally, if one would define a macro only to

interpolate a small amount of text, without invoking requests or calling any other macros, one defines a

string instead. Only one string is predefined by the language.

\*[.T] Contains the name of the output device (for example, “utf8” or “pdf”).

The .ds request creates a string with a specified name and contents. If the identifier named by .ds already

exists as an alias, the target of the alias is redefined. If .ds is called with only one argument, the named

string becomes empty. Otherwise, troff stores the remainder of the control line in copy mode; see subsec-

tion “Copy mode” below.

The \* escape sequence dereferences a string’s name, interpolating its contents. If the name does not exist,

it is defined as empty, nothing is interpolated, and a warning in category “mac” is emitted. See section

“Warnings” in troff (1). The bracketed interpolation form accepts arguments that are handled as macro ar-

guments are; see section “Calling macros” above. In contrast to macro calls, however, if a closing bracket ]
occurs in a string argument, that argument must be enclosed in double quotes. \* is interpreted even in

copy mode. When defining strings, argument interpolations must be escaped if they are to reference para-

meters from the calling context; see section “Parameters” below.

An initial neutral double quote " in the string contents is stripped to allow embedding of leading spaces.

Any other " is interpreted literally, but it is wise to use the special character escape sequence \[dq] instead

if the string might be interpolated as part of a macro argument; see section “Calling macros” above. Strings

are not limited to a single input line of text. \newline works just as it does elsewhere. The resulting string

is stored without the newlines. Care is therefore required when interpolating strings while filling is dis-

abled. It is not possible to embed a newline in a string that will be interpreted as such when the string is in-

terpolated. To achieve that effect, use \* to interpolate a macro instead.

The .as request is similar to .ds but appends to a string instead of redefining it. If .as is called with only one

argument, no operation is performed (beyond dereferencing the string).

Because strings are similar to macros, they too can be defined to suppress AT&T troff compatibility mode

enablement when interpolated; see section “Compatibility mode” below. The .ds1 request defines a string

that suspends compatibility mode when the string is later interpolated. .as1 is likewise similar to .as, with

compatibility mode suspended when the appended portion of the string is later interpolated.

Caution: Unlike other requests, the second argument to these requests consumes the remainder of the input

line, including trailing spaces. Ending string definitions (and appendments) with a comment, even an

empty one, prevents unwanted space from creeping into them during source document maintenance.

Several requests exist to perform rudimentary string operations. Strings can be queried (.length) and modi-

fied (.chop, .substring, .stringup, .stringdown), and their names can be manipulated through renaming,

removal, and aliasing (.rn, .rm, .als).

When a request, macro, string, or diversion is aliased, redefinitions and appendments “write through” alias

names. To replace an alias with a separately defined object, you must use the rm request on its name first.

Registers
In the roff language, numbers can be stored in registers. Many built-in registers exist, supplying anything

from the date to details of formatting parameters. You can also define your own. See section “Identifiers”

above for information on constructing a valid name for a register.

Define registers and update their values with the nr request or the \R escape sequence.

Registers can also be incremented or decremented by a configured amount at the time they are interpolated.

The value of the increment is specified with a third argument to the .nr request, and a special interpolation

groff 1.23.0 2 July 2023 22



groff (7) Miscellaneous Information Manual groff (7)

syntax, \n± is used to alter and then retrieve the register’s value. Together, these features are called auto-in-

crement. (A neg ative auto-increment can be considered an “auto-decrement”.)

Many predefined registers are available. In the following presentation, the register interpolation syntax

\n[name] is used to refer to a register name to clearly distinguish it from a string or request name. The reg-

ister name space is separate from that used for requests, macros, strings, and diversions. Bear in mind that

the symbols \n[] are not part of the register name.

Read-only registers
Predefined registers whose identifiers start with a dot are read-only. Many are Boolean-valued. Some are

string-valued, meaning that they interpolate text. A register name (without the dot) is often associated with

a request of the same name; exceptions are noted.

\n[.$] Count of arguments passed to currently interpolated macro or string.

\n[.a] Amount of extra post-vertical line space; see \x.

\n[.A] Approximate output is being formatted (Boolean-valued); see troff −a option.

\n[.b] Font emboldening offset; see .bd.

\n[.br] The normal control character was used to call the currently interpolated macro (Boolean-

valued).

\n[.c] Input line number; see .lf and register “c.”.

\n[.C] Compatibility mode is enabled (Boolean-valued); see .cp. Always false when processing

.do; see register .cp.

\n[.cdp] Depth of last glyph formatted in the environment; positive if glyph extends below the

baseline.

\n[.ce] Count of output lines remaining to be centered.

\n[.cht] Height of last glyph formatted in the environment; positive if glyph extends above the

baseline.

\n[.color] Color output is enabled (Boolean-valued).

\n[.cp] Within .do, the saved value of compatibility mode; see register .C.

\n[.csk] Skew of the last glyph formatted in the environment; skew is how far to the right of the

center of a glyph the center of an accent over that glyph should be placed.

\n[.d] Vertical drawing position in diversion.

\n[.ev] Name of environment (string-valued).

\n[.f] Mounting position of selected font; see .ft and \f.
\n[.F] Name of input file (string-valued); see .lf.
\n[.fam] Name of default font family (string-valued).

\n[.fn] Resolved name of selected font (string-valued); see .ft and \f.
\n[.fp] Next non-zero free font mounting position index.

\n[.g] Always true in GNU troff (Boolean-valued).

\n[.h] Te xt baseline high-water mark on page or in diversion.

\n[.H] Horizontal motion quantum of output device in basic units.

\n[.height] Font height; see \H.

\n[.hla] Hyphenation language in environment (string-valued).

\n[.hlc] Count of immediately preceding consecutive hyphenated lines in environment.

\n[.hlm] Maximum quantity of consecutive hyphenated lines allowed in environment.

\n[.hy] Automatic hyphenation mode in environment.

\n[.hym] Hyphenation margin in environment.

\n[.hys] Hyphenation space adjustment threshold in environment.

\n[.i] Indentation amount; see .in.

\n[.in] Indentation amount applicable to the pending output line; see .ti.
\n[.int] Previous output line was “interrupted” or continued with \c (Boolean-valued).

\n[.j] Adjustment mode encoded as an integer; see .ad and .na. Do not interpret or perform

arithmetic on its value.

\n[.k] Horizontal drawing position relative to indentation.

groff 1.23.0 2 July 2023 23



groff (7) Miscellaneous Information Manual groff (7)

\n[.kern] Pairwise kerning is enabled (Boolean-valued).

\n[.l] Line length; see .ll.
\n[.L] Line spacing; see .ls.

\n[.lg] Ligature mode.

\n[.linetabs] Line-tabs mode is enabled (Boolean-valued).

\n[.ll] Line length applicable to the pending output line.

\n[.lt] Title length.

\n[.m] Stroke color (string-valued); see .gcolor and \m. Empty if the stroke color is the default.

\n[.M] Fill color (string-valued); see .fcolor and \M. Empty if the fill color is the default.

\n[.n] Length of formatted output on previous output line.

\n[.ne] Amount of vertical space required by last .ne that caused a trap to be sprung; also see

register .trunc.

\n[.nm] Output line numbering is enabled (Boolean-valued).

\n[.nn] Count of output lines remaining to have numbering suppressed.

\n[.ns] No-space mode is enabled (Boolean-valued).

\n[.o] Page offset; see .po.

\n[.O] Output suppression nesting level; see \O.

\n[.p] Page length; see .pl.
\n[.P] The page is selected for output (Boolean-valued); see troff −o option.

\n[.pe] Page ejection is in progress (Boolean-valued).

\n[.pn] Number of the next page.

\n[.ps] Type size in scaled points.

\n[.psr] Most recently requested type size in scaled points; see .ps and \s.

\n[.pvs] Post-vertical line spacing.

\n[.R] Count of available unused registers; always 10,000 in GNU troff .

\n[.rj] Count of lines remaining to be right-aligned.

\n[.s] Type size in points as a decimal fraction (string-valued); see .ps and \s.

\n[.slant] Slant of font in degrees; see \S.

\n[.sr] Most recently requested type size in points as a decimal fraction (string-valued); see .ps
and \s.

\n[.ss] Size of minimal inter-word space in twelfths of the space width of the selected font.

\n[.sss] Size of additional inter-sentence space in twelfths of the space width of the selected font.

\n[.sty] Selected abstract style (string-valued); see .ft and \f.
\n[.t] Distance to next vertical position trap; see .wh and .ch.

\n[.T] An output device was explicitly selected (Boolean-valued); see troff −T option.

\n[.tabs] Representation of tab settings suitable for use as argument to .ta (string-valued).

\n[.trunc] Amount of vertical space truncated by the most recently sprung vertical position trap, or,

if the trap was sprung by an .ne, minus the amount of vertical motion produced by .ne;

also see register .ne.

\n[.u] Filling is enabled (Boolean-valued); see .fi and .nf.
\n[.U] Unsafe mode is enabled (Boolean-valued); see troff −U option.

\n[.v] Vertical line spacing; see .vs.

\n[.V] Vertical motion quantum of the output device in basic units.

\n[.vpt] Vertical position traps are enabled (Boolean-valued).

\n[.w] Width of previous glyph formatted in the environment.

\n[.warn] Sum of the numeric codes of enabled warning categories.

\n[.x] Major version number of the running troff formatter.

\n[.y] Minor version number of the running troff formatter.

\n[.Y] Revision number of the running troff formatter.

\n[.z] Name of diversion (string-valued). Empty if output is directed to the top-level div ersion.

\n[.zoom] Zoom multiplier of current font (in thousandths; zero if no magnification); see .fzoom.

Writable predefined registers
Several registers are predefined but also modifiable; some are updated upon interpretation of certain re-

quests or escape sequences. Date- and time-related registers are set to the local time as determined by

groff 1.23.0 2 July 2023 24



groff (7) Miscellaneous Information Manual groff (7)

localtime(3) when the formatter launches. This initialization can be overridden by

SOURCE_DATE_EPOCH and TZ ; see section “Environment” of groff (1).

\n[$$] Process ID of troff .

\n[%] Page number.

\n[c.] Input line number.

\n[ct] Union of character types of each glyph rendered into dummy environment by \w.

\n[dl] Width of last closed diversion.

\n[dn] Height of last closed diversion.

\n[dw] Day of the week (1–7; 1 is Sunday).

\n[dy] Day of the month (1–31).

\n[hours] Count of hours elapsed since midnight (0–23).

\n[hp] Horizontal drawing position relative to start of input line.

\n[llx] Lower-left x coordinate (in PostScript units) of PostScript image; see .psbb.

\n[lly] Lower-left y coordinate (in PostScript units) of PostScript image; see .psbb.

\n[ln] Output line number; see .nm.

\n[lsn] Count of leading spaces on input line.

\n[lss] Amount of horizontal space corresponding to leading spaces on input line.

\n[minutes] Count of minutes elapsed in the hour (0–59).

\n[mo] Month of the year (1–12).

\n[nl] Vertical drawing position.

\n[opmaxx]

\n[opmaxy]

\n[opminx]

\n[opminy] These four registers mark the top left- and bottom right-hand corners of a rectangle en-

compassing all formatted output on the page. They are reset to −1 by \O0 or \O1.

\n[rsb] As register sb, adding maximum glyph height to measurement.

\n[rst] As register st, adding maximum glyph depth to measurement.

\n[sb] Maximum displacement of text baseline below its original position after rendering into

dummy environment by \w.

\n[seconds] Count of seconds elapsed in the minute (0–60).

\n[skw] Skew of last glyph rendered into dummy environment by \w.

\n[slimit] The maximum depth of troff ’s internal input stack. If ≤0, there is no limit: recursion can

continue until available memory is exhausted. The default is 1,000.

\n[ssc] Subscript correction of last glyph rendered into dummy environment by \w.

\n[st] Maximum displacement of text baseline above its original position after rendering into

dummy environment by \w.

\n[systat] Return value of system() function; see .sy.

\n[urx] Upper-right x coordinate (in PostScript units) of PostScript image; see .psbb.

\n[ury] Upper-right y coordinate (in PostScript units) of PostScript image; see .psbb.

\n[year] Gregorian year.

\n[yr] Gregorian year minus 1900.

Using fonts
In digital typography, a font is a collection of characters in a specific typeface that a device can render as

glyphs at a desired size. (Terminals and some output devices have fonts that render at only one or two

sizes. As examples of the latter, take the groff lj4 device’s Lineprinter, and lbp’s Courier and Elite faces.)

A roff formatter can change typefaces at any point in the text. The basic faces are a set of styles combining

upright and slanted shapes with normal and heavy stroke weights: “R”, “I”, “B”, and “BI”—these stand for

roman, bold, italic, and bold-italic. For linguistic text, GNU troff groups typefaces into families contain-

ing each of these styles. (Font designers prepare families such that the styles share esthetic properties.) A

text font is thus often a family combined with a style, but it need not be: consider the ps and pdf devices’

ZCMI (Zapf Chancery Medium italic)—often, no other style of Zapf Chancery Medium is provided. On

typesetting devices, at least one special font is available, comprising unstyled glyphs for mathematical op-

erators and other purposes.

groff 1.23.0 2 July 2023 25



groff (7) Miscellaneous Information Manual groff (7)

Like AT&T troff, GNU troff does not itself load or manipulate a digital font file; instead it works with a

font description file that characterizes it, including its glyph repertoire and the metrics (dimensions) of

each glyph. This information permits the formatter to accurately place glyphs with respect to each other.

Before using a font description, the formatter associates it with a mounting position, a place in an ordered

list of available typefaces. So that a document need not be strongly coupled to a specific font family, in

GNU troff an output device can associate a style in the abstract sense with a mounting position. Thus the

default family can be combined with a style dynamically, producing a resolved font name.

Fonts often have trademarked names, and even Free Software fonts can require renaming upon modifica-

tion. groff maintains a convention that a device’s serif font family is given the name T (“Times”), its sans-

serif family H (“Helvetica”), and its monospaced family C (“Courier”). Historical inertia has driven

groff ’s font identifiers to short uppercase abbreviations of font names, as with TR, TB, TI, TBI, and a spe-

cial font S.

The default family used with abstract styles can be changed at any time; initially, it is T. Typically, abstract

styles are arranged in the first four mounting positions in the order shown above. The default mounting po-

sition, and therefore style, is always 1 (R). By issuing appropriate formatter instructions, you can override

these defaults before your document writes its first glyph.

Terminal output devices cannot change font families and lack special fonts. They support style changes by

overstriking, or by altering ISO 6429/ECMA-48 graphic renditions (character cell attributes).

Hyphenation
When filling, groff hyphenates words as needed at user-specified and automatically determined hyphen-

ation points. Explicitly hyphenated words such as “mother-in-law” are always eligible for breaking after

each of their hyphens. The hyphenation character \% and non-printing break point \: escape sequences

may be used to control the hyphenation and breaking of individual words. The .hw request sets user-de-

fined hyphenation points for specified words at any subsequent occurrence. Otherwise, groff determines

hyphenation points automatically by default.

Several requests influence automatic hyphenation. Because conventions vary, a variety of hyphenation

modes is available to the .hy request; these determine whether hyphenation will apply to a word prior to

breaking a line at the end of a page (more or less; see below for details), and at which positions within that

word automatically determined hyphenation points are permissible. The default is “1” for historical rea-

sons, but this is not an appropriate value for the English hyphenation patterns used by groff ; localization

macro files loaded by troffrc and macro packages often override it.

0 disables hyphenation.

1 enables hyphenation except after the first and before the last character of a word.

The remaining values “imply” 1; that is, they enable hyphenation under the same conditions as “.hy 1”, and

then apply or lift restrictions relative to that basis.

2 disables hyphenation of the last word on a page. (Hyphenation is prevented if the next page loca-

tion trap is closer to the vertical drawing position than the next text baseline would be. See section

“Traps” below.)

4 disables hyphenation before the last two characters of a word.

8 disables hyphenation after the first two characters of a word.

16 enables hyphenation before the last character of a word.

32 enables hyphenation after the first character of a word.

Apart from value 2, restrictions imposed by the hyphenation mode are not respected for words whose hy-

phenations have been specified with the hyphenation character (“ \%” by default) or the .hw request.

Nonzero values are additive. For example, mode 12 causes groff to hyphenate neither the last two nor the

first two characters of a word. Some values cannot be used together because they contradict; for instance,

values 4 and 16, and values 8 and 32. As noted, it is superfluous to add 1 to any non-zero even mode.

groff 1.23.0 2 July 2023 26



groff (7) Miscellaneous Information Manual groff (7)

The places within a word that are eligible for hyphenation are determined by language-specific data (.hla,

.hpf, and .hpfa) and lettercase relationships (.hcode and .hpfcode). Furthermore, hyphenation of a word

might be suppressed due to a limit on consecutive hyphenated lines (.hlm), a minimum line length thresh-

old (.hym), or because the line can instead be adjusted with additional inter-word space (.hys).

Localization
The set of hyphenation patterns is associated with the hyphenation language set by the .hla request. The

.hpf request is usually invoked by a localization file loaded by the troffrc file. groff provides localization

files for several languages; see groff_tmac(5).

Writing macros
The .de request defines a macro named for its argument. If that name already exists as an alias, the target

of the alias is redefined; see section “Strings” above. troff enters “copy mode” (see below), storing subse-

quent input lines as the definition. If the optional second argument is not specified, the definition ends with

the control line “..” (two dots). Alternatively, a second argument names a macro whose call syntax ends the

definition; this “end macro” is then called normally. Spaces or tabs are permitted after the first control

character in the line containing this ending token, but a tab immediately after the token prevents its recogni-

tion as the end of a macro definition. Macro definitions can be nested if they use distinct end macros or if

their ending tokens are sufficiently escaped. An end macro need not be defined until it is called. This fact

enables a nested macro definition to begin inside one macro and end inside another.

Variants of .de disable compatibility mode and/or indirect the names of the macros specified for definition

or termination: these are .de1, .dei, and .dei1. Append to macro definitions with .am, .am1, .ami, and

.ami1. The .als, .rm, and .rn requests create an alias of, remove, and rename a macro, respectively. .re-
turn stops the execution of a macro immediately, returning to the enclosing context.

Parameters
Macro call and string interpolation parameters can be accessed using escape sequences starting with “ \$”.

The \n[.$] read-only register stores the count of parameters available to a macro or string; its value can be

changed by the .shift request, which dequeues parameters from the current list. The \$0 escape sequence

interpolates the name by which a macro was called. Applying string interpolation to a macro does not

change this name.

Copy mode
When troff processes certain requests, most importantly those which define or append to a macro or string,

it does so in copy mode: it copies the characters of the definition into a dedicated storage region, interpolat-

ing the escape sequences \n, \g, \$, \*, \V, and \? normally; interpreting \newline immediately; discarding

comments \" and \#; interpolating the current leader, escape, or tab character with \a, \e, and \t, respec-

tively; and storing all other escape sequences in an encoded form. The complement of copy mode—a roff

formatter’s behavior when not defining or appending to a macro, string, or diversion—where all macros are

interpolated, requests invoked, and valid escape sequences processed immediately upon recognition, can be

termed interpretation mode.

The escape character, \ by default, can escape itself. This enables you to control whether a given \n, \g, \$,

\*, \V, or \? escape sequence is interpreted at the time the macro containing it is defined, or later when the

macro is called.

You can think of \\ as a “delayed” backslash; it is the escape character followed by a backslash from which

the escape character has removed its special meaning. Consequently, \\ is not an escape sequence in the

usual sense. In any escape sequence \X that troff does not recognize, the escape character is ignored and

X is output. An unrecognized escape sequence causes a warning in category “escape”, with two excep-

tions, \\ being one. The other is \., which escapes the control character. It is used to permit nested macro

definitions to end without a named macro call to conclude them. Without a syntax for escaping the control

character, this would not be possible. roff documents should not use the \\ or \. character sequences outside

of copy mode; they serve only to obfuscate the input. Use \e to represent the escape character, \[rs] to ob-

tain a backslash glyph, and \& before . and ' where troff expects them as control characters if you mean to

use them literally.

groff 1.23.0 2 July 2023 27



groff (7) Miscellaneous Information Manual groff (7)

Macro definitions can be nested to arbitrary depth. In “ \\”, each escape character is interpreted twice—

once in copy mode, when the macro is defined, and once in interpretation mode, when the macro is called.

This fact leads to exponential growth in the quantity of escape characters required to delay interpolation of

\n, \g, \$, \*, \V, and \? at each nesting level. An alternative is to use \E, which represents an escape charac-

ter that is not interpreted in copy mode. Because \. is not a true escape sequence, we can’t use \E to keep

“..” from ending a macro definition prematurely. If the multiplicity of backslashes complicates mainte-

nance, use end macros.

Traps
Tr aps are locations in the output, or conditions on the input that, when reached or fulfilled, call a specified

macro. A vertical position trap calls a macro when the formatter’s vertical drawing position reaches or

passes, in the downward direction, a certain location on the output page or in a diversion. Its applications

include setting page headers and footers, body text in multiple columns, and footnotes. These traps can oc-

cur at a given location on the page (.wh, .ch); at a given location in the current diversion (.dt)—together,

these are known as vertical position traps, which can be disabled and re-enabled (.vpt).

A div ersion is not formatted in the context of a page, so it lacks page location traps; instead it can have a di-

version trap. There can exist at most one such vertical position trap per diversion.

Other kinds of trap can be planted at a blank line (.blm); at a line with leading space characters (.lsm); after

a certain number of productive input lines (.it, .itc); or at the end of input (.em). Macros called by traps are

passed no arguments. Setting a trap is also called planting one. It is said that a trap is sprung if its condi-

tion is fulfilled.

Registers associated with trap management include vertical position trap enablement status (\n[.vpt]), dis-

tance to the next trap (\n[.t]), amount of needed (.ne-requested) space that caused the most recent vertical

position trap to be sprung (\n[.ne]), amount of needed space truncated from the amount requested

(\n[.trunc]), page ejection status (\n[.pe]), and leading space count (\n[.lsn]) with its corresponding amount

of motion (\n[.lss]).

Page location traps
A page location trap is a vertical position trap that applies to the page; that is, to undiverted output. Many

can be present; manage them with the wh and ch requests. Non-negative page locations given to these re-

quests set the trap relative to the top of the page; negative values set the trap relative to the bottom of the

page. It is not possible to plant a trap less than one basic unit from the page bottom: a location of “−0” is

interpreted as “0”, the top of the page. An existing visible trap (see below) at the same location is removed;

this is .wh’s sole function if its second argument is missing.

A trap is sprung only if it is visible, meaning that its location is reachable on the page and it is not hidden

by another trap at the same location already planted there. (A trap planted at “20i” or “−30i” will not be

sprung on a page of length “11i”.)

A trap above the top or at or below the bottom of the page can be made visible by either moving it into the

page area or increasing the page length so that the trap is on the page. Negative trap values always use the

current page length; they are not converted to an absolute vertical position. Use .ptr to dump page location

traps to the standard error stream; their positions are reported in basic units.

The implicit page trap
An implicit page trap always exists in the top-level div ersion; it works like a trap in some ways but not oth-

ers. Its purpose is to eject the current page and start the next one. It has no name, so it cannot be moved or

deleted with wh or ch requests. You cannot hide it by placing another trap at its location, and can move it

only by redefining the page length with .pl. Its operation is suppressed when vertical page traps are dis-

abled with the vpt request.

Diversions
In roff systems it is possible to format text as if for output, but instead of writing it immediately, one can

divert the formatted text into a named storage area. It is retrieved later by specifying its name after a con-

trol character. The same name space is used for such diversions as for strings and macros; see section

“Identifiers” above. Such text is sometimes said to be “stored in a macro”, but this coinage obscures the

important distinction between macros and strings on one hand and diversions on the other; the former store

groff 1.23.0 2 July 2023 28



groff (7) Miscellaneous Information Manual groff (7)

unformatted input text, and the latter capture formatted output. Diversions also do not interpret arguments.

Applications of diversions include “keeps” (preventing a page break from occurring at an inconvenient

place by forcing a set of output lines to be set as a group), footnotes, tables of contents, and indices. For or-

thogonality it is said that GNU troff is in the top-level diversion if no diversion is active (that is, formatted

output is being “diverted” immediately to the output device.

Dereferencing an undefined diversion will create an empty one of that name and cause a warning in cate-

gory mac to be emitted. (see section “Warnings” in troff (1)). A diversion does not exist for the purpose of

testing with the d conditional operator until its initial definition ends (see subsection “Conditional expres-

sions” above).

The di request creates a diversion, including any partially collected line. da appends to a diversion, creat-

ing one if it does not already exist. If the diversion’s name already exists as an alias, the target of the alias

is replaced or appended to; see section “Strings” above. box and boxa works similarly, but ignore partially

collected lines. Call any of these macros again without an argument to end the diversion.

Diversions can be nested. The registers .d, .z, dn, and dl report information about the current (or last

closed) diversion. .h is meaningful in diversions, including the top level.

The \! and \? escape sequences and output request escape from a diversion, the first two to the enclosing

level and the last to the top level. This facility is termed transparent embedding.

The asciify and unformat requests reprocess diversions.

Punning names
Macros, strings, and diversions share a name space; see section “Identifiers” above. Internally, the same

mechanism is used to store them. You can thus call a macro with string interpolation syntax and vice versa.

Interpolating a string does not hide existing macro arguments. The sequence \\ can be placed at the end of a

line in a macro definition or, within a macro definition, immediately after the interpolation of a macro as a

string to suppress the effect of a newline.

Environments
Environments store most of the parameters that control text processing. A default environment named “0”

exists when troff starts up; it is modified by formatting-related requests and escape sequences.

You can create new environments and switch among them. Only one is current at any giv en time. Active

environments are managed using a stack, a data structure supporting “push” and “pop” operations. The

current environment is at the top of the stack. The same environment name can be pushed onto the stack

multiple times, possibly interleaved with others. Popping the environment stack does not destroy the cur-

rent environment; it remains accessible by name and can be made current again by pushing it at any time.

Environments cannot be renamed or deleted, and can only be modified when current. To inspect the envi-

ronment stack, use the pev request; see section “Debugging” below.

Environments store the following information.

• a partially collected line, if any

• data about the most recently output glyph and line (registers .cdp, .cht, .csk, .n, .w)

• typeface parameters (size, family, style, height and slant, inter-word and inter-sentence space sizes)

• page parameters (line length, title length, vertical spacing, line spacing, indentation, line numbering, cen-

tering, right-alignment, underlining, hyphenation parameters)

• filling enablement; adjustment enablement and mode

• tab stops; tab, leader, escape, control, no-break control, hyphenation, and margin characters

• input line traps

• stroke and fill colors

The ev request pushes to and pops from the environment stack, while evc copies a named environment’s

contents to the current one.

groff 1.23.0 2 July 2023 29



groff (7) Miscellaneous Information Manual groff (7)

Underlining
In RUNOFF (see roff (7)), underlining, even of lengthy passages, was straightforward because only fixed-

pitch printing devices were targeted. Typesetter output posed a greater challenge. There exists a groff re-

quest .ul (see above) that underlines subsequent source lines on terminal devices, but on typesetters, it se-

lects an italic font style instead. The ms macro package (see groff_ms(7)) offers a macro .UL, but it too

produces the desired effect only on typesetters, and has other limitations.

One could adapt ms’s approach to the construction of a macro as follows.

.de UNDERLINE

. ie n \\$1\f[I]\\$2\f[P]\\$3

. el \\$1\Z'\\$2'\v'.25m'\D'l \w'\\$2'u 0'\v'−.25m'\\$3

..
If doclifter(1) makes trouble, change the macro name UNDERLINE into some 2-letter word, like Ul.
Moreover, change the form of the font selection escape sequence from \f[P] to \fP.

Underlining without macro definitions
If one does not want to use macro definitions, e.g., when doclifter gets lost, use the following.

.ds u1 before

.ds u2 in

.ds u3 after

.ie n \*[u1]\f[I]\*[u2]\f[P]\*[u3]

.el \*[u1]\Z'\*[u2]'\v'.25m'\D'l \w'\*[u2]'u 0'\v'−.25m'\*[u3]
When using doclifter, it might be necessary to change syntax forms such as \[xy] and \*[xy] to those sup-

ported by AT&T troff : \*(xy and \(xy, and so on.

Then these lines could look like

.ds u1 before

.ds u2 in

.ds u3 after

.ie n \*[u1]\fI\*(u2\fP\*(u3

.el \*(u1\Z'\*(u2'\v'.25m'\D'l \w'\*(u2'u 0'\v'−.25m'\*(u3

The result looks like

before in after

Underlining by overstriking with \(ul
The \z escape sequence writes a glyph without advancing the drawing position, enabling overstriking.

Thus, \zc\(ul formats c with an underrule glyph on top of it. Video terminals implement the underrule by

setting a character cell’s underline attribute, so this technique works in both nroff and troff modes.

Long words may then look intimidating in the input; a clarifying approach might be to use the input line

continuation escape sequence \newline to place each underlined character on its own input line. Thus,

.nf
\&\fB: ${\fIvar\fR\c
\zo\(ul\
\zp\(ul\c
\&\fIvalue\fB}
.fi

produces

: ${varopvalue}
as output.

Compatibility mode
The differences between the roff language recognized by GNU troff and that of AT&T troff , as well as the

device, font, and device-independent intermediate output formats described by CSTR #54 are documented

in groff_diff (7). groff provides an AT&T compatibility mode. The .cp request and registers .C and .cp set

and test the enablement of this mode.

groff 1.23.0 2 July 2023 30



groff (7) Miscellaneous Information Manual groff (7)

Debugging
Preprocessors use the .lf request to preserve the identities of line numbers and names of input files. groff

emits a variety of error diagnostics and supports several categories of warning; the output of these can be

selectively suppressed with .warn (and see the −E, −w, and −W options of troff (1)). A trace of the format-

ter’s input processing stack can be emitted when errors or warnings occur by means of troff (1)’s −b option,

or produced on demand with the .backtrace request. .tm, .tmc, and .tm1 can be used to emit customized

diagnostic messages or for instrumentation while troubleshooting. .ex and .ab cause early termination with

successful and error exit codes respectively, to halt further processing when continuing would be fruitless.

Examine the state of the formatter with requests that write lists of defined names—macros, strings, and di-

versions—(.pm); environments (.pev), registers (.pnr), and page location traps (.ptr) to the standard error

stream.

Authors
This document was written by by Trent A. Fisher, Werner Lemberg, and G. Branden Robinson 〈g.branden

.robinson@gmail.com〉 . Section “Underlining” was primarily written by Bernd Warken 〈groff−bernd

.warken−72@web.de〉 .

See also
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff

manual. You can browse it interactively with “info groff”.

“Troff User’s Manual” by Joseph F. Ossanna, 1976 (revised by Brian W. Kernighan, 1992), AT&T Bell

Laboratories Computing Science Technical Report No. 54, widely called simply “CSTR #54”, documents

the language, device and font description file formats, and device-independent output format referred to

collectively in groff documentation as “AT&T troff ”.

“A Typesetter-independent TROFF” by Brian W. Kernighan, 1982, AT&T Bell Laboratories Computing

Science Technical Report No. 97 (CSTR #97), provides additional insights into the device and font descrip-

tion file formats and device-independent output format.

groff (1)

is the preferred interface to the groff system; it manages the pipeline that carries a source docu-

ment through preprocessors, the troff formatter, and an output driver to viewable or printable form.

It also exhaustively lists the man pages provided with the GNU roff system.

groff_char(7)

discusses character encoding issues, escape sequences that produce glyphs, and enumerates groff ’s

predefined special character escape sequences.

groff_diff (7)

covers differences between the GNU troff formatter, its device and font description file formats, its

device-independent output format, and those of AT&T troff , whose design it reimplements.

groff_font(5)

describes the formats of the files that describe devices (DESC) and fonts.

groff_tmac(5)

surveys macro packages provided with groff , describes how documents can take advantage of

them, offers guidance on writing macro packages and using diversions, and includes historical in-

formation on macro package naming conventions.

roff (7) presents a detailed history of roff systems and summarizes concepts common to them.

groff 1.23.0 2 July 2023 31


