
groff_diff (7) Miscellaneous Information Manual groff_diff (7)

Name
groff_diff − differences between GNU roff and AT&T troff

Description
The GNU roff text processing system, groff , is an extension of AT&T troff , the typesetting system origi-

nating in Unix systems of the 1970s. groff removes many arbitrary limitations and adds features, both to

the input language and to the page description language output by the troff formatter. Differences arising

from groff ’s implementation of AT&T troff features are also noted. See roff (7) for background.

Language
GNU troff features identifiers of arbitrary length; supports color output, non-integral type sizes, and user-

defined characters; adds more conditional expression operators; recognizes additional scaling units and nu-

meric operators; enables general file I/O (in “unsafe mode” only); and exposes more formatter state.

Long names
GNU troff introduces many new requests; with three exceptions (cp, do, rj), they hav e names longer than

two characters. The names of registers, fonts, strings/macros/diversions, environments, special characters,

streams, and colors can be of any length. Anywhere AT&T troff supports a parameterized escape sequence

that uses an opening parenthesis “(” to introduce a two-character argument, groff supports a square-brack-

eted form “[]” where the argument within can be of arbitrary length.

Font families, abstract styles, and translation
GNU troff can group text typefaces into families containing each of the styles “R”, “I”, “B”, and “BI”. So

that a document need not be coupled to a specific font family, an output device can associate a style in the

abstract sense with a mounting position. Thus the default family can be combined with a style dynamically,

producing a resolved font name. A document can translate, or remap, fonts with the ftr request.

Applying the requests cs, bd, tkf, uf, or fspecial to an abstract style affects the member of the default fam-

ily corresponding to that style. The default family can be set with the fam request or −f command-line op-

tion. The styles directive in the output device’s DESC file controls which mounting positions (if any) are

initially associated with abstract styles rather than fonts, and the sty request can update this association.

Colors
groff supports color output with a variety of color spaces and up to 16 bits per channel. Some devices, par-

ticularly terminals, may be more limited. When color support is enabled, two colors are current at any

given time: the stroke color, with which glyphs, rules (lines), and geometric figures are drawn, and the fill

color, which paints the interior of filled geometric figures. The color, defcolor, gcolor, and fcolor re-

quests; \m and \M escape sequences; and .color, .m, and .M registers exercise color support.

Fractional type sizes and new scaling units
AT&T troff interpreted all type size measurements in points. Combined with integer arithmetic, this design

choice made it impossible to support, for instance, ten and a half-point type. In GNU troff , an output de-

vice can select a scaling factor that subdivides a point into “scaled points”. A type size expressed in scaled

points can thus represent a non-integral type size.

A scaled point is equal to 1/sizescale points, where sizescale is specified in the device description file,

DESC, and defaults to 1; see groff_font(5). Requests and escape sequences in GNU troff interpret argu-

ments that represent a type size in points, which the formatter multiplies by sizescale and converts to an in-

teger. Arguments treated in this way comprise those to the escape sequences \H and \s, to the request ps,

the third argument to the cs request, and the second and fourth arguments to the tkf request. Scaled points

may be specified explicitly with the z scaling unit. In GNU troff , the register \n[.s] can interpolate a non-

integral type size. The register \n[.ps] interpolates the type size in scaled points.

For example, if sizescale is 1000, then a scaled point is one thousandth of a point. Consequently, “.ps
10.5” is synonymous with “.ps 10.5z”; both set the type size to 10,500 scaled points, or 10.5 points.

It makes no sense to use the “z” scaling unit in a numeric expression whose default scaling unit is neither

“u” nor “z”, so GNU troff disallows this. Similarly, it is nonsensical to use a scaling unit other than “z”

or “u” in a numeric expression whose default scaling unit is “z”, so GNU troff disallows this as well.

groff 1.23.0 2 July 2023 1

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

Another new scaling unit, “s”, multiplies by the number of basic units in a scaled point. Thus, “\n[.ps]s” is

equal to “1m” by definition. Do not confuse the “s” and “z” scaling units.

Output devices may be limited in the type sizes they can employ. The .s and .ps registers represent the type

size as selected by the output driver as it understands a device’s capability. The last requested type size is

interpolated in scaled points by the read-only register .psr and in points as a decimal fraction by the read-

only string-valued register .sr. Both are associated with the environment. For example, if a type size of

10.95 points is requested, and the nearest size permitted by a sizes request (or by the sizes or sizescale di-

rectives in the device’s DESC file) is 11 points, the output driver uses the latter value.

A further two new measurement units available in groff are “M”, which indicates hundredths of an em, and

“f”, which multiplies by 65,536. The latter provides convenient fractions for color definitions with the

defcolor request. For example, 0.5f equals 32768u.

Numeric expressions
GNU troff permits spaces in a numeric expression within parentheses, and offers three new operators.

e1>?e2 Interpolate the greater of e1 and e2.

e1<?e2 Interpolate the lesser of e1 and e2.

(c;e) Evaluate e using c as the default scaling unit, ignoring scaling units in e if c is empty.

Conditional expressions
More conditions can be tested with the “ if ” and ie requests, as well as the new “while” request.

c chr True if a character chr is available, where chr is an ordinary character (Unicode basic Latin ex-

cluding control characters and the space), a special character, or \N'index'.

d nam True if a string, macro, diversion, or request nam is defined.

F fnt True if a font fnt is available; fnt can be an abstract style or a font name. fnt is handled as if it

were accessed with the ft request (that is, abstract styles and font translation are applied), but fnt

cannot be a mounting position, and no font is mounted.

m col True if a color col is defined.

r reg True if a register reg is defined.

S sty True if a style sty is registered. Font translation applies.

v Always false. This condition is for compatibility with certain other troff implementations only.

(This refers to vtroff , a translator that would convert the C/A/T output from early-vintage AT&T

troff to a form suitable for Versatec and Benson-Varian plotters.)

Drawing commands
GNU troff offers drawing commands to create filled circles and ellipses, and polygons. Stroked (outlined)

objects are drawn with the stroke color and filled (solid) ones shaded with the fill color. These are indepen-

dent properties; if you want a filled, stroked figure, you must draw the same figure twice using each draw-

ing command. A filled figure is always smaller than a stroked one because the former is drawn only within

its defined area, whereas strokes have a line thickness (set with another new drawing command, \D't').

Escape sequences
groff introduces several new escape sequences and extends the syntax of a few AT&T troff escape se-

quences (namely, \D, \f, \k, \n, \s, \$, and *). In the following list, escape sequences are collated alphabeti-

cally at first, and then by symbol roughly in Unicode code point order.

\A'anything'
Interpolate 1 if anything is a valid identifier, and 0 otherwise. Because invalid input characters are

removed, invalid identifiers are empty or contain spaces, tabs, or newlines. You can employ \A to

validate a macro argument before using it to construct another escape sequence or identifier.

\B'anything'
Interpolate 1 if anything is a valid numeric expression, and 0 otherwise. You might use \B along

with the “ if ” request to filter out invalid macro arguments.

groff 1.23.0 2 July 2023 2

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\D'C d' Draw filled circle of diameter d with its leftmost point at the drawing position.

\D'E h v'
Draw filled ellipse with h and v as the axes and the leftmost point at the drawing position.

\D'p h1 v1 . . . hn vn'
Draw polygon with vertices at drawing position and each point in sequence. GNU troff closes the

polygon by drawing a line from (hn, vn) back to the initial drawing position; DWB and Heirloom

troff s do not. Afterward, the drawing position is left at (hn, vn).

\D'P h1 v1 . . . hn vn'
As \D'p', but the polygon is filled.

\D't n' Set line thickness of geometric objects to to n basic units. A zero n selects the minimal supported

thickness. A negative n selects a thickness proportional to the type size; this is the default.

\E Embed an escape character that is not interpreted in copy mode (compare with \a and \t). You can

use it to ease the writing of nested macro definitions. It is also convenient to define strings con-

taining escape sequences that need to work when used in copy mode (for example, as macro argu-

ments), or which will be interpolated at varying macro nesting depths.

\f[font] Select font, which may be a mounting position, abstract style, or font name, to choose the type-

face. \f[] and \fP are synonyms; we recommend the former.

\F f

\F(fm

\F[family]
Select default font family. \F[] makes the previous font family the default. \FP is unlike \fP; it se-

lects font family “P” as the default. See the fam request below.

\k(rg
\k[reg] Mark horizontal drawing position in two-character register name rg or arbitrary register name reg.

\mc

\m(cl

\m[col] Set the stroke color. \m[] restores the previous stroke color, or the default if there is none.

\Mc

\M(cl

\M[col] Set the fill color. \M[] restores the previous fill color, or the default if there is none.

\n[reg] Interpolate register reg.

\On

\O[n] Suppress troff output of glyphs and geometric objects. The sequences \O2, \O3, \O4, and \O5 are

intended for internal use by grohtml(1).

\O0
\O1 Disable and enable, respectively, the emission of glyphs and geometric objects to the out-

put driver, provided that this sequence occurs at the outermost suppression level (see \O3
and \O4). Horizontal motions corresponding to non-overstruck glyph widths still occur.

These sequences also reset the registers opminx, opminy, opmaxx, and opmaxy to −1.

These four registers mark the top left and bottom right hand corners of a box encompass-

ing all written or drawn output.

\O2 At the outermost suppression level, enable emission of glyphs and geometric objects, and

write to the standard error stream the page number and values of the four aforementioned

registers encompassing glyphs written since the last interpolation of a \O sequence, as

well as the page offset, line length, image file name (if any), horizontal and vertical de-

vice motion quanta, and input file name. Numeric values are in basic units.

groff 1.23.0 2 July 2023 3

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\O3
\O4 Begin and end a nested suppression level, respectively. grohtml uses this mechanism to

create images of output preprocessed with pic, eqn, and tbl. At startup, troff is at the

outermost suppression level. pre−grohtml generates these sequences when processing

the document, using troff with the ps output device, Ghostscript, and the PNM tools to

produce images in PNG format. These sequences start a new page if the device is not

html or xhtml, to reduce the number of images crossing a page boundary.

\O5[Pfile]
At the outermost suppression level, write the name file to the standard error stream at po-

sition P, which must be one of l, r, c, or i, corresponding to left, right, centered, and in-

line alignments within the document, respectively. file is is a name associated with the

production of the next image.

\R'name ±n'
Synonymous with “.nr name ±n”.

\s[±n]
\s±[n]
\s'±n'
\s±'n' Set the type size to, or increment or decrement it by, n scaled points.

\Ve

\V(ev

\V[env] Interpolate contents of the environment variable env, as returned by getenv(3). \V is interpreted

ev en in copy mode.

\X'anything'
Within \X arguments, the escape sequences \&, \), \%, and \: are ignored; \space and \~ are con-

verted to single space characters; and \\ is reduced to \. So that the basic Latin subset of the Uni-

code character set (that is, ISO 646:1991-IRV or, popularly, “US-ASCII”) can be reliably encoded

in anything, the special character escape sequences \−, \[aq], \[dq], \[ga], \[ha], \[rs], and \[ti] are

mapped to basic Latin characters; see groff_char(7). For this transformation, character transla-

tions and definitions are ignored. Other escape sequences are not supported.

If the use_charnames_in_special directive appears in the output device’s DESC file, the use of

special character escape sequences is not an error; they are simply output verbatim (with the ex-

ception of the seven mapped to Unicode basic Latin characters, discussed above).

use_charnames_in_special is currently employed only by grohtml(1).

\Ym

\Y(ma

\Y[mac]
Interpolate a macro as a device control command. This is similar to \X'*[mac]', except the con-

tents of mac are not interpreted, and mac can be a macro and thus contain newlines, whereas the

argument to \X cannot. This inclusion of newlines requires an extension to the AT&T troff output

format, and will confuse postprocessors that do not know about it.

\Z'anything'
Save the drawing position, format anything, then restore it. Tabs and leaders in the argument are

ignored with an error diagnostic.

\# Everything up to and including the next newline is ignored. This escape sequence is interpreted

ev en in copy mode. \# is like \", except that \" does not ignore a newline; the latter therefore can-

not be used by itself for a whole-line comment—it leaves a blank line on the input stream.

\$0 Interpolate the name by which the macro being interpreted was called. In GNU troff this name

can vary; see the als request.

groff 1.23.0 2 July 2023 4

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\$(nn

\$[nnn] In a macro or string definition, interpolate the nnth or nnnth argument. Macros and strings can

have an unlimited number of arguments.

\$* In a macro or string definition, interpolate the catenation of all arguments, separated by spaces.

\$@ In a macro or string definition, interpolate the catenation of all arguments, with each surrounded

by double quotes and separated by spaces.

\$^ In a macro or string definition, interpolate the catenation of all arguments constructed in a form

suitable for passage to the ds request.

\) Interpolate a transparent dummy character—one that is ignored by end-of-sentence detection. It

behaves as \&, except that \& is treated as letters and numerals normally are after “.”, “?”, and “!”;

\& cancels end-of-sentence detection, and \) does not.

*[string [arg . . .]]
Interpolate string, passing it arg . . . as arguments.

\/ Apply an italic correction: modify the spacing of the preceding glyph so that the distance between

it and the following glyph is correct if the latter is of upright shape. For example, if an italic “f” is

followed immediately by a roman right parenthesis, then in many fonts the top right portion of

the “f” overlaps the top left of the right parenthesis, producing f), which is ugly. Inserting \/ be-

tween them produces f) and avoids this problem. Use this escape sequence whenever an oblique

glyph is immediately followed by an upright glyph without any intervening space.

\, Apply a left italic correction: modify the spacing of the following glyph so that the distance be-

tween it and the preceding glyph is correct if the latter is of upright shape. For example, if a ro-

man left parenthesis is immediately followed by an italic “f”, then in many fonts the bottom left

portion of the “f” overlaps the bottom of the left parenthesis, producing (f, which is ugly. Insert-

ing \, between them produces (f and avoids this problem. Use this escape sequence whenever an

upright glyph is followed immediately by an oblique glyph without any intervening space.

\: Insert a non-printing break point. That is, a word can break there, but the soft hyphen character

does not mark the break point if it does (in contrast to “\%”). This escape sequence is an input

word boundary, so the remainder of the word is subject to hyphenation as normal.

\?anything\?
When used in a diversion, this transparently embeds anything in the diversion. anything is read in

copy mode. When the diversion is reread, anything is interpreted. anything may not contain new-

lines; use \! if you want to embed newlines in a diversion. The escape sequence \? is also recog-

nized in copy mode and becomes an internal code; it is this code that terminates anything. Thus

.nr x 1

.nf

.di d
\?\\?\\\\?\\\\\\\\nx\\\\?\\?\?
.di
.nr x 2
.di e
.d
.di
.nr x 3
.di f
.e
.di
.nr x 4
.f

prints 4.

groff 1.23.0 2 July 2023 5

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\[char] Typeset the special character char.

\[base-char combining-component . . .]
Typeset a composite glyph consisting of base-char overlaid with one or more combining-compo-

nents. For example, “ \[A ho]” is a capital letter “A” with a “hook accent” (ogonek). See the

composite request below; Groff: The GNU Implementation of troff , the groff Te xinfo manual, for

details of composite glyph name construction; and groff_char(7) for a list of components used in

composite glyph names.

\~ Insert an unbreakable space that is adjustable like an ordinary space. It is discarded from the end

of an output line if a break is forced.

Restricted requests
To mitigate risks from untrusted input documents, the pi and sy requests are disabled by default. troff (1)’s

−U option enables the formatter’s “unsafe mode”, restoring their function (and enabling additional groff

extension requests, open, opena, and pso).

New requests
.aln new old

Create alias new for existing register named old , causing the names to refer to the same stored

value. If old is undefined, a warning in category “reg” is generated and the request is ignored. To

remove a register alias, invoke rr on its name. A register’s contents do not become inaccessible

until it has no more names.

.als new old

Create alias new for existing request, string, macro, or diversion named old , causing the names to

refer to the same stored object. If old is undefined, a warning in category “mac” is produced, and

the request is ignored. The “am”, “as”, da, de, di, and ds requests (together with their variants)

create a new object only if the name of the macro, diversion, or string is currently undefined or if it

is defined as a request; normally, they modify the value of an existing object. To remove an alias,

invoke rm on its name. The object itself is not destroyed until it has no more names.

When a request, macro, string, or diversion is aliased, redefinitions and appendments “write

through” alias names. To replace an alias with a separately defined object, you must use the rm
request on its name first.

.am1 name [end-name]

As “am”, but compatibility mode is disabled while the appendment to name is interpreted: a

“compatibility save” token is inserted at its beginning, and a “compatibility restore” token at its

end. As a consequence, the requests “am”, am1, de, and de1 can be intermixed freely since the

compatibility save/restore tokens affect only the parts of the macro populated by am1 and de1.

.ami name [end-name]

Append to macro indirectly. See dei below.

.ami1 name [end-name]

As ami, but compatibility mode is disabled during interpretation of the appendment.

.as1 name [contents]

As “as”, but compatibility mode is disabled while the appendment to name is interpreted: a “com-

patibility save” token is inserted at the beginning of contents, and a “compatibility restore” token

after it. As a consequence, the requests “as”, as1, ds, and ds1 can be intermixed freely since the

compatibility save/restore tokens affect only the portions of the strings populated by as1 and ds1.

.asciify div

Unformat the diversion div in a way such that Unicode basic Latin (ASCII) characters, characters

translated with the trin request, space characters, and some escape sequences, that were formatted

in the diversion div are treated like ordinary input characters when div is reread. Doing so can be

useful in conjunction with the writem request. asciify can be also used for gross hacks; for exam-

ple, the following sets register n to 1.

groff 1.23.0 2 July 2023 6

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.tr @.

.di x
@nr n 1
.br
.di
.tr @@
.asciify x
.x

asciify cannot return all items in a diversion to their source equivalent: nodes such as those pro-

duced by \N[. . .] will remain nodes, so the result cannot be guaranteed to be a pure string. See

section “Copy mode” in groff (7). Glyph parameters such as the type face and size are not pre-

served; use unformat to achieve that.

.backtrace
Write backtrace of input stack to the standard error stream. See the −b option of troff (1).

.blm [name]

Set a blank line macro (trap). If a blank line macro is thus defined, groff executes macro when a

blank line is encountered in the input file, instead of the usual behavior. A line consisting only of

spaces is also treated as blank and subject to this trap. If no argument is supplied, the default

blank line behavior is (re-)established.

.box [name]

.boxa [name]

Divert (or append) output to name, similarly to the di and da requests, respectively. Any pending

output line is not included in the diversion. Without an argument, stop diverting output; any pend-

ing output line inside the diversion is discarded.

.break Exit a “while” loop. Do not confuse this request with a typographical break or the br request. See

“continue”.

.brp Break and adjust line; this is the AT&T troff escape sequence \p in request form.

.cflags n c1 c2 . . .

Assign properties encoded by the number n to characters c1, c2, and so on. Ordinary and special

characters have certain associated properties. (Glyphs don’t: to GNU troff , like AT&T device-in-

dependent troff , a glyph is an identifier corresponding to a rectangle with some metrics; see

groff_font(5).) The first argument is the sum of the desired flags and the remaining arguments are

the characters to be assigned those properties. Spaces between the cn arguments are optional.

Any argument cn can be a character class defined with the class request rather than an individual

character.

The non-negative integer n is the sum of any of the following. Some combinations are nonsensi-

cal, such as “33” (1 + 32).

1 Recognize the character as ending a sentence if followed by a newline or two spaces. Ini-

tially, characters “.?!” hav e this property.

2 Enable breaks before the character. A line is not broken at a character with this property

unless the characters on each side both have non-zero hyphenation codes. This exception

can be overridden by adding 64. Initially, no characters have this property.

4 Enable breaks after the character. A line is not broken at a character with this property

unless the characters on each side both have non-zero hyphenation codes. This exception

can be overridden by adding 64. Initially, characters “−\[hy]\[em]” hav e this property.

8 Mark the glyph associated with this character as overlapping other instances of itself hori-

zontally. Initially, characters “\[ul]\[rn]\[ru]\[radicalex]\[sqrtex]” hav e this property.

groff 1.23.0 2 July 2023 7

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

16 Mark the glyph associated with this character as overlapping other instances of itself ver-

tically. Initially, the character “\[br]” has this property.

32 Mark the character as transparent for the purpose of end-of-sentence recognition. In

other words, an end-of-sentence character followed by any number of characters with this

property is treated as the end of a sentence if followed by a newline or two spaces. This

is the same as having a zero space factor in TEX. Initially, characters

“ ' ")]*\[dg]\[dd]\[rq]\ [cq] ” hav e this property.

64 Ignore hyphenation codes of the surrounding characters. Use this value in combination

with values 2 and 4. Initially, no characters have this property.

For example, if you need an automatic break point after the en-dash in numeric ranges

like “3000–5000”, insert

.cflags 68 \[en]
into your document. However, this can lead to bad layout if done without thinking; in

most situations, a better solution than changing the cflags value is inserting “\:” right after

the hyphen at the places that really need a break point.

The remaining values were implemented for East Asian language support; those who use alpha-

betic scripts exclusively can disregard them.

128 Prohibit a break before the character, but allow a break after the character. This works

only in combination with values 256 and 512 and has no effect otherwise. Initially, no

characters have this property.

256 Prohibit a break after the character, but allow a break before the character. This works

only in combination with values 128 and 512 and has no effect otherwise. Initially, no

characters have this property.

512 Allow a break before or after the character. This works only in combination with values

128 and 256 and has no effect otherwise. Initially, no characters have this property.

In contrast to values 2 and 4, the values 128, 256, and 512 work pairwise. If, for example, the left

character has value 512, and the right character 128, no break will be automatically inserted be-

tween them. If we use value 6 instead for the left character, a break after the character can’t be

suppressed since the neighboring character on the right doesn’t get examined.

.char c contents

Define the ordinary or special character c as contents, which can be empty. More precisely, char
defines a groff object (or redefines an existing one) that is accessed with the name c on input, and

produces contents on output. Every time c is to be formatted, contents is processed in a temporary

environment and the result is wrapped up into a single object. Compatibility mode is turned off

and the escape character is set to \ while contents is processed. Any emboldening, constant spac-

ing, or track kerning is applied to this object as a whole, not to each character in contents.

An object defined by this request can be used just like a glyph provided by the output device. In

particular, other characters can be translated to it with the tr request; it can be made the tab or

leader fill character with the tc and lc requests; sequences of it can be drawn with the \l and \L es-

cape sequences; and, if the hcode request is used on c, it is subject to automatic hyphenation.

To prevent infinite recursion, occurrences of c within its own definition are treated normally (as if

it were not being defined with char). The tr and trin requests take precedence if char both apply

to c. A character definition can be removed with the rchar request.

.chop object

Remove the last character from the macro, string, or diversion object. This is useful for removing

the newline from the end of a diversion that is to be interpolated as a string. This request can be

used repeatedly on the same object; see section “gtroff Internals” in Groff: The GNU Implementa-

tion of troff , the groff Te xinfo manual, for discussion of nodes inserted by groff .

groff 1.23.0 2 July 2023 8

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.class name c1 c2 . . .

Define a character class (or simply “class”) name comprising the characters or range expressions

c1, c2, and so on.

A class thus defined can then be referred to in lieu of listing all the characters within it. Currently,

only the cflags request can handle references to character classes.

In the request’s simplest form, each cn is a character (or special character).

.class [quotes] ' \[aq] \[dq] \[oq] \[cq] \[lq] \[rq]

Since class and special character names share the same name space, we recommend starting and

ending the class name with “[” and “]”, respectively, to avoid collisions with existing character

names defined by groff or the user (with char and related requests). This practice applies the

presence of “]” in the class name to prevent the usage of the special character escape form “\[. . .]”,

thus you must use the \C escape to access a class with such a name.

You can also use a character range expression consisting of a start character followed by “−” and

then an end character. Internally, GNU troff converts these two character names to Unicode code

points (according to the groff glyph list [GGL]), which determine the start and end values of the

range. If that fails, the class definition is skipped. Furthermore, classes can be nested.

.class [prepunct] , : ; > }

.class [prepunctx] \C'[prepunct]' \[u2013]−\[u2016]
The class “[prepunctx]” thus contains the contents of the class “[prepunct]” and characters in the

range U+2013–U+2016.

If you want to include “−” in a class, it must be the first character value in the argument list, other-

wise it gets misinterpreted as part of the range syntax.

It is not possible to use class names as end points of range definitions.

A typical use of the class request is to control line-breaking and hyphenation rules as defined by

the cflags request. For example, to inhibit line breaks before the characters belonging to the

“[prepunctx]” class defined in the previous example, you can write the following.

.cflags 2 \C'[prepunctx]'

.close stream

Close the stream named stream, inv alidating it as an argument to the write request. See open.

.composite c1 c2

Map character name c1 to character name c2 when c1 is a combining component in a composite

glyph. Typically, this remaps a spacing glyph to a combining one.

.continue
Skip the remainder of a “while” loop’s body, immediately starting the next iteration. See break.

.color n

If n is non-zero or missing, enable colors (the default), otherwise disable them.

.cp n If n is non-zero or missing, enable compatibility mode, otherwise disable it. In compatibility

mode, long names are not recognized, and the incompatibilities they cause do not arise.

.defcolor ident scheme color-component . . .

Define a color named ident. scheme identifies a color space and determines the number of re-

quired color-components; it must be one of “rgb” (three components), “cmy” (three components),

“cmyk” (four components), or “gray” (one component). “grey” is accepted as a synonym of

“gray”. The color components can be encoded as a hexadecimal value starting with # or ##. The

former indicates that each component is in the range 0–255 (0–FF), the latter the range 0–65535

(0–FFFF). Alternatively, each color component can be specified as a decimal fraction in the range

0–1, interpreted using a default scaling unit of “f”, which multiplies its value by 65,536 (but

clamps it at 65,535).

Each output device has a color named “default”, which cannot be redefined. A device’s default

stroke and fill colors are not necessarily the same.

groff 1.23.0 2 July 2023 9

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.de1 name [end-name]

Define a macro to be interpreted with compatibility mode disabled. When name is called, compat-

ibility mode enablement status is saved; it is restored when the call completes.

.dei name [end-name]

Define macro indirectly, with the name of the macro to be defined in string name and the name of

the end macro terminating its definition in string end-name.

.dei1 name [end-name]

As dei, but compatibility mode is disabled while the definition of the macro named in string name

is interpreted.

.device anything

Write anything, read in copy mode, to troff output as a device control command. An initial neu-

tral double quote is stripped to allow the embedding of leading spaces.

.devicem name

Write contents of macro or string name to troff output as a device control command.

.do name [arg . . .]

Interpret the string, request, diversion, or macro name (along with any arguments) with compati-

bility mode disabled. Compatibility mode is restored (only if it was active) when the expansion of

name is interpreted; that is, the restored compatibility state applies to the contents of the macro,

string, or diversion name as well as data read from files or pipes if name is any of the so, soquiet,
mso, msoquiet, or pso requests.

For example,

.de mac1
FOO
..
.de1 mac2
groff
.mac1
..
.de mac3
compatibility
.mac1
..
.de ma
\\$1
..
.cp 1
.do mac1
.do mac2 \" mac2, defined with .de1, calls "mac1"
.do mac3 \" mac3 calls "ma" with argument "c1"
.do mac3 \[ti] \" groff syntax accepted in .do arguments

results in

FOO groff FOO compatibility c1 ~
as output.

.ds1 name contents

As ds, but compatibility mode is disabled while name is interpreted: a “compatibility save” token

is inserted at the beginning of contents, and a “compatibility restore” token after it.

.ecr Restore the escape character saved with ecs, or set escape character to “ \” if none has been saved.

.ecs Save the current escape character.

groff 1.23.0 2 July 2023 10

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.evc env

Copy the properties of environment env to the current environment, except for the following data.

• a partially collected line, if present;

• the interruption status of the previous input line (due to use of the \c escape sequence);

• the count of remaining lines to center, to right-justify, or to underline (with or without under-

lined spaces)—these are set to zero;

• the activation status of temporary indentation;

• input traps and their associated data;

• the activation status of line numbering (which can be reactivated with “.nm +0”); and

• the count of consecutive hyphenated lines (set to zero).

.fam [family]

Set default font family to family. If no argument is given, the previous font family is selected, or

the formatter’s default family if there is none. The formatter’s default font family is “T” (Times),

but it can be overridden by the output device—see groff_font(5). The default font family is associ-

ated with the environment. See \F.

.fchar c contents

Define fallback character c as contents. The syntax of this request is the same as the char request;

the difference is that a character defined with char hides a glyph with the same name in the se-

lected font, whereas characters defined with fchar are checked only if c isn’t found in the selected

font. This test happens before special fonts are searched.

.fcolor color

Set the fill color to color. Without an argument, the previous fill color is selected.

.fschar f c contents

Define fallback special character c for font f as contents. A character defined by fschar is located

after the list of fonts declared with fspecial is searched but before those declared with the

“special” request.

.fspecial f s1 s2 . . .

When font f is selected, fonts s1, s2, . . . are treated as special; that is, they are searched for glyphs

not found in f . Any fonts specified in the “special” request are searched after s1, s2, and so on.

Without s arguments, fspecial clears the list of fonts treated as special when f is selected.

.ftr f g Translate font f to g. Whenever a font named f is referred to in an \f escape sequence, in the F
and S conditional expression operators, or in the ft, ul, bd, cs, tkf, special, fspecial, fp, or sty re-

quests, font g is used. If g is missing or identical to f , then font f is not translated.

.fzoom f zoom

Set zoom factor zoom for font f . zoom must a non-negative integer multiple of 1/1000th. If it is

missing or is equal to zero, it means the same as 1000, namely no magnification. f must be a re-

solved font name, not an abstract style.

.gcolor color

Set the stroke color to color. Without an argument, the previous stroke color is selected.

.hcode c1 code1 [c2 code2] . . .

Set the hyphenation code of character c1 to code1, that of c2 to code2, and so on. A hyphenation

code must be an ordinary character (not a special character escape sequence) other than a digit.

The request is ignored if given no arguments.

For hyphenation to work, hyphenation codes must be set up. At startup, groff assigns hyphenation

codes to the letters “a–z” (mapped to themselves), to the letters “A–Z” (mapped to “a–z”), and

zero to all other characters. Normally, hyphenation patterns contain only lowercase letters which

should be applied regardless of case. In other words, they assume that the words “ABBOT” and

“Abbot” should be hyphenated exactly as “abbot” is. hcode extends this principle to letters

groff 1.23.0 2 July 2023 11

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

outside the Unicode basic Latin alphabet; without it, words containing such letters won’t be hy-

phenated properly even if the corresponding hyphenation patterns contain them.

.hla lang

Set the hyphenation language to lang. Hyphenation exceptions specified with the hw request and

hyphenation patterns and exceptions specified with the hpf and hpfa requests are associated with

the hyphenation language. The hla request is usually invoked by a localization file, which is in

turn loaded by the troffrc or troffrc−end file; see the hpf request below. The hyphenation language

is associated with the environment.

.hlm [n]

Set the maximum number of consecutive hyphenated lines to n. If n is negative, there is no maxi-

mum. If omitted, n is −1. This value is associated with the environment. Only lines output from

a giv en environment count towards the maximum associated with that environment. Hyphens re-

sulting from \% are counted; explicit hyphens are not.

.hpf pattern-file

Read hyphenation patterns from pattern-file. This file is sought in the same way that macro files

are with the mso request or the −mname command-line option to groff (1) and troff (1).

The pattern-file should have the same format as (simple) TEX pattern files. The following scan-

ning rules are implemented.

• A percent sign starts a comment (up to the end of the line) even if preceded by a backslash.

• “Digraphs” like \$ are not supported.

• “^^xx” (where each x is 0–9 or a–f) and ^^c (character c in the code point range 0–127 deci-

mal) are recognized; other uses of ^ cause an error.

• No macro expansion is performed.

• hpf checks for the expression \patterns{. . .} (possibly with whitespace before or after the

braces). Everything between the braces is taken as hyphenation patterns. Consequently, “{” and

“}” are not allowed in patterns.

• Similarly, \hyphenation{. . .} gives a list of hyphenation exceptions.

• \endinput is recognized also.

• For backwards compatibility, if \patterns is missing, the whole file is treated as a list of hyphen-

ation patterns (but the “%” character is still recognized as the start of a comment).

Use the hpfcode request (see below) to map the encoding used in hyphenation pattern files to

groff ’s input encoding.

The set of hyphenation patterns is associated with the hyphenation language set by the hla request.

The hpf request is usually invoked by a localization file loaded by the troffrc file. By default, trof-

frc loads the localization file for English. (As of groff 1.23.0, localization files for Czech (cs),

German (de), English (en), French (fr), Japanese (ja), Swedish (sv), and Chinese (zh) exist.) For

Western languages, the localization file sets the hyphenation mode and loads hyphenation patterns

and exceptions.

A second call to hpf (for the same language) replaces the old patterns with the new ones.

Invoking hpf causes an error if there is no hyphenation language.

If no hpf request is specified (either in the document, in a file loaded at startup, or in a macro

package), GNU troff won’t automatically hyphenate at all.

.hpfa pattern-file

As hpf, except that the hyphenation patterns and exceptions from pattern-file are appended to the

patterns already applied to the hyphenation language of the environment.

groff 1.23.0 2 July 2023 12

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.hpfcode a b [c d] . . .

Define mapping values for character codes in pattern files. This is an older mechanism no longer

used by groff ’s own macro files; for its successor, see hcode above. hpf or hpfa apply the map-

ping after reading or appending to the active list of patterns. Its arguments are pairs of character

codes—integers from 0 to 255. The request maps character code a to code b, code c to code d ,

and so on. Character codes that would otherwise be invalid in groff can be used. By default,

ev ery code maps to itself except those for letters “A” to “Z”, which map to those for “a” to “z”.

.hym [length]

Set the (right) hyphenation margin to length. If the adjustment mode is not “b” or “n”, the line is

not hyphenated if it is shorter than length. Without an argument, the default hyphenation margin

is reset to its default value, 0. The default scaling unit is “m”. The hyphenation margin is associ-

ated with the environment. A negative argument resets the hyphenation margin to zero, emitting a

warning in category “range”.

.hys [hyphenation-space]

Suppress hyphenation of the line in adjustment modes “b” or “n”, if it can be justified by adding

no more than hyphenation-space extra space to each inter-word space. Without an argument, the

hyphenation space adjustment threshold is set to its default value, 0. The default scaling unit

is “m”. The hyphenation space adjustment threshold is associated with the current environment.

A neg ative argument resets the hyphenation space adjustment threshold to zero, emitting a warn-

ing in category “range”.

.itc n name

As “it”, but lines interrupted with the \c escape sequence are not applied to the line count.

.kern n If n is non-zero or missing, enable pairwise kerning (the default), otherwise disable it.

.length reg anything

Compute the number of characters in anything and return the count in the register reg. If reg

doesn’t exist, it is created. anything is read in copy mode.

.ds xxx abcd\h'3i'efgh

.length yyy *[xxx]

\n[yyy]

14

.linetabs n

If n is non-zero or missing, enable line-tabs mode, otherwise disable it (the default). In this mode,

tab stops are computed relative to the start of the pending output line, instead of the drawing posi-

tion corresponding to the start of the input line. Line-tabs mode is a property of the environment.

For example, the following

.ds x a\t\c

.ds y b\t\c

.ds z c

.ta 1i 3i
*x
*y
*z

yields

a b c
whereas in line-tabs mode, the same input gives

a b c
instead.

.lsm [name]

Set the leading space macro (trap) to name. If there are leading space characters on an input line,

name is invoked in lieu of the usual roff behavior; the leading spaces are removed. The count of

groff 1.23.0 2 July 2023 13

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

leading spaces on an input line is stored in \n[lsn], and the amount of corresponding horizontal

motion in \n[lss], irrespective of whether a leading space trap is set. When it is, the leading spaces

are removed from the input line, and no motion is produced before calling name. If no argument

is supplied, the default leading space behavior is (re-)established.

.mso file

As “so”, except that file is sought in the same directories as arguments to the groff (1) and troff (1)

−m command-line option are (the “tmac path”). If the file name to be interpolated has the form

name.tmac and it isn’t found, mso tries to include tmac.name instead and vice versa. If file does

not exist, a warning in category “file” is emitted and the request has no other effect.

.msoquiet file

As mso, but no warning is emitted if file does not exist.

.nop anything

Interpret anything as if it were an input line. nop resembles “.if 1”; it puts a break on the output if

anything is empty. Unlike “ if ”, it cannot govern conditional blocks. Its application is to maintain

consistent indentation within macro definitions even when producing text lines.

.nroff Make the n conditional expression evaluate true and t false. See troff.

.open stream file

Open file for writing and associate stream with it. See write and close.

.opena stream file

As open, but if file exists, append to it instead of truncating it.

.output contents

Emit contents, which are read in copy mode, to the formatter output; this is similar to \! used in the

top-level div ersion. An initial neutral double quote in contents is stripped to allow the embedding

of leading spaces.

.pev Report the state of the current environment followed by that of all other environments to the stan-

dard error stream.

.pnr Write the names and values of all currently defined registers to the standard error stream.

.psbb file

Get the bounding box of a PostScript image file. This file must conform to Adobe’s Document

Structuring Conventions; the request attempts to extract the bounding box values from a

%%BoundingBox comment. After invocation, the x and y coordinates (in PostScript units) of

the lower left and upper right corners can be found in the registers \n[llx], \n[lly], \n[urx], and

\n[ury], respectively. If an error occurs, these four registers are set to zero.

.pso command

As “so”, except that input comes from the standard output stream of command .

.ptr Report the names and vertical positions of all page location traps to the standard error stream.

Empty slots in the list are shown as well, because they can affect the visibility of subsequently

planted traps.

.pvs ±n Set the post-vertical line spacing to n; default scaling unit is “p”. With no argument, the post-ver-

tical line space is set to its previous value.

In GNU troff , the distance between text baselines consists of the extra pre-vertical line spacing set

by the most negative \x argument on the pending output line, the vertical spacing (vs), the extra

post-vertical line spacing set by the most positive \x argument on the pending output line, and the

post-vertical line spacing set by this request.

.rchar c . . .

Remove definition of each ordinary or special character c, undoing the effect of a char, fchar, or

schar request. Glyphs, which are defined by font description files, cannot be removed. Spaces

and tabs may separate c arguments.

groff 1.23.0 2 July 2023 14

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.return Within a macro, return immediately. If called with an argument, return twice, namely from the

current macro and from the macro one level higher. No effect otherwise.

.rfschar f c . . .

Remove each fallback special character c for font f . Spaces and tabs may separate c arguments.

See fschar.

.rj [n] Right-align the next n input lines. Without an argument, right-align the next input line. rj implies

“.ce 0”, and ce implies “.rj 0”.

.rnn r1 r2

Rename register r1 to r2. If r1 doesn’t exist, the request is ignored.

.schar c contents

Define global fallback character c as contents. See char; the distinction is that a character defined

with schar is located after the list of fonts declared with the special request but before any

mounted special fonts.

.shc [c] Set the soft hyphen character, inserted when a word is hyphenated automatically or at a hyphen-

ation character, to c. If c is omitted, the soft hyphen character is set to the default, \[hy]. If the se-

lected glyph does not exist in the font in use at a potential hyphenation point, then the line is not

broken at that point. Neither character definitions (char and similar) nor translations (tr and simi-

lar) are considered when assigning the soft hyphen character.

.shift n In a macro, shift the arguments by n positions: argument i becomes argument i − n; arguments 1

to n are no longer available. If n is missing, arguments are shifted by 1. No effect otherwise.

.sizes s1 s2 . . . sn [0]

Set the available type sizes to s1, s2, . . . sn scaled points. The list of sizes can be terminated by an

optional “0”. Each si can also be a range m–n. In contrast to the device description file directive

of the same name (see groff_font(5)), the argument list can’t extend over more than one line.

.soquiet file

As “so”, but no warning is emitted if file does not exist.

.special f . . .

Declare each font f as special, searching it for glyphs not found in the selected font. Without ar-

guments, this list of special fonts is made empty.

.spreadwarn [limit]

Emit a break warning if the additional space inserted for each space between words in an output

line adjusted to both margins with “.ad b” is larger than or equal to limit. A negative value is

treated as zero; an absent argument toggles the warning on and off without changing limit. The

default scaling unit is m. At startup, spreadwarn is inactive and limit is 3 m.

For example, “.spreadwarn 0.2m” causes a warning if break warnings are not suppressed and

troff must add 0.2 m or more for each inter-word space in a line.

.stringdown str

.stringup str

Alter the string named str by replacing each of its bytes with its lowercase (down) or uppercase

(up) version (if one exists). Special characters (see groff_char(7)) will often transform in the ex-

pected way due to the regular naming convention for accented characters. When they do not, use

substrings and/or catenation.

.ds resume R\['e]sum\['e]\"

*[resume]

.stringdown resume

*[resume]

.stringup resume

*[resume]

Résumé résumé RÉSUMÉ

groff 1.23.0 2 July 2023 15

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.sty n s Associate abstract style s with font mounting position n.

.substring string start [end]

Replace the string named string with its substring bounded by the indices start and end , inclu-

sively. The first character in the string has index 0. If end is omitted, it is implicitly set to the

largest valid value (the string length minus one). Negative indices count backwards from the end

of the string: the last character has index −1, the character before the last has index −2, and so on.

.ds xxx abcdefgh

.substring xxx 1 −4

*[xxx]

bcde
.substring xxx 2

*[xxx]

de

.tkf f s1 n1 s2 n2

Enable track kerning for font f . When the current font is f the width of every glyph is increased

by an amount between n1 and n2; when the current type size is less than or equal to s1 the width is

increased by n1; when it is greater than or equal to s2 the width is increased by n2; when the type

size is greater than or equal to s1 and less than or equal to s2 the increase in width is a linear func-

tion of the type size.

.tm1 message

As tm request, but strips a leading neutral double quote from message to allow the embedding of

leading spaces.

.tmc message

As tm1 request, but does not append a newline.

.trf file Transparently output the contents of file file. Each line is output as if preceded by \!; howev er, the

lines are not subject to copy-mode interpretation. If the file does not end with a newline, then a

newline is added. Unlike cf, file cannot contain characters that are invalid as input to GNU troff .

For example, you can define a macro x containing the contents of file f , using

.di x

.trf f

.di

.trin abcd

This is the same as the tr request except that the asciify request uses the character code (if any) be-

fore the character translation. Example:

.trin ax

.di xxx
a
.br
.di
.xxx
.trin aa
.asciify xxx
.xxx

The result is “x a”. Using tr, the result would be “x x”.

.trnt abcd

This is the same as the tr request except that the translations do not apply to text that is transpar-

ently throughput into a diversion with \!. For example,

.tr ab

.di x

groff 1.23.0 2 July 2023 16

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\!.tm a
.di
.x

prints b; if trnt is used instead of tr it prints a.

.troff Make the t conditional expression evaluate true and n false. See nroff.

.unformat div

Unformat the diversion div. Unlike asciify, unformat handles only tabs and spaces between

words, the latter usually arising from spaces or newlines in the input. Tabs are treated as input to-

kens, and spaces become adjustable again. The vertical sizes of lines are not preserved, but glyph

information (font, type size, space width, and so on) is retained.

.vpt n If n is non-zero or missing, enable vertical position traps (the default), otherwise disable them.

Vertical position traps are those set by the ch, wh, and dt requests.

.warn [n]

Select the categories, or “types”, of reported warnings. n is the sum of the numeric codes associ-

ated with each warning category that is to be enabled; all other categories are disabled. The cate-

gories and their associated codes are listed in section “Warnings” of troff (1). For example, “.warn
0” disables all warnings, and “.warn 1” disables all warnings except those about missing glyphs.

If no argument is given, all warning categories are enabled.

.warnscale si

Set the scaling unit used in warnings to si. Valid values for si are u, i (the default), c, p, and P.

.while cond-expr anything

Evaluate the conditional expression cond-expr, and repeatedly execute anything unless and until

cond-expr evaluates false. anything, which is often a conditional block, is referred to as the while
request’s body.

troff treats the body of a while request similarly to that of a de request (albeit one not read in copy

mode), but stores it under an internal name and deletes it when the loop finishes. The operation of

a macro containing a while request can slow significantly if the while body is large. Each time the

macro is executed, the while body is parsed and stored again. An often better solution—and one

that is more portable, since AT&T troff lacked the while request—is to instead write a recursive

macro. It will be parsed only once (unless you redefine it). To prevent infinite loops, the default

number of available recursion levels is 1,000 or somewhat less (because things other than macro

calls can be on the input stack). You can disable this protective measure, or raise the limit, by set-

ting the slimit register. See section “Debugging” below.

If a while body begins with a conditional block, its closing brace must end an input line.

The break and continue requests alter a while loop’s flow of control.

.write stream anything

Write anything to stream, which must previously have been the subject of an open request, fol-

lowed by a newline. anything is read in copy mode. An initial neutral double quote in anything is

stripped to allow the embedding of leading spaces.

.writec stream anything

As write, but without a trailing newline.

.writem stream name

Write the contents of the macro or string name to stream, which must previously have been the

subject of an open request. name is read in copy mode.

groff 1.23.0 2 July 2023 17

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

Extended requests
.cf file In a diversion, embed an object which, when reread, will cause the contents of file to be copied

verbatim to the output. In AT&T troff , the contents of file are immediately copied to the output

regardless of whether a diversion is being written to; this behavior is so anomalous that it must be

considered a bug.

.de name [end-name]

.am name [end-name]

.ds name [contents]

.as name [contents]

In compatibility mode, these requests behave similarly to de1, am1, ds1, and as1, respectively: a

“compatibility save” token is inserted at the beginning, and a “compatibility restore” token at the

end, with compatibility mode switched on during execution.

.hy n New values 16 and 32 are available; the former enables hyphenation before the last character in a

word, and the latter enables hyphenation after the first character in a word.

.ss word-space-size [additional-sentence-space-size]

A second argument sets the amount of additional space separating sentences on the same output

line. If omitted, this amount is set to word-space-size. Both arguments are in twelfths of current

font’s space width (typically one-fourth to one-third em for Western scripts; see groff_font(5)).

The default for both parameters is 12. Negative values are erroneous.

.ta [[n1 n2 . . . nn]T r1 r2 . . . rn]

groff supports an extended syntax to specify repeating tab stops after the “T” mark. These values

are always taken as relative distances from the previous tab stop. This is the idiomatic way to

specify tab stops at equal intervals in groff .

The syntax summary above instructs groff to set tabs at positions n1, n2, . . . , nn, then at nn + r1,

nn + r2, . . . , nn + rn, then at nn + rn + r1, nn + rn + r2, . . . , nn + rn + rn, and so on.

New registers
GNU troff exposes more formatter state via many new read-only registers. Their names often correspond

to the requests that affect them.

\n[.br] Within a macro call, interpolate 1 if the macro is called with the “normal” control character

(“.” by default), and 0 otherwise. This facility allows the reliable modification of requests.

Using this register outside of a macro definition makes no sense.

.als bp*orig bp

.de bp

.tm before bp

.ie \\n[.br] .bp*orig

.el 'bp*orig

.tm after bp

..

\n[.C] Interpolate 1 if compatibility mode is in effect, 0 otherwise. See cp.

\n[.cdp] Interpolate depth of last glyph added to the environment. It is positive if the glyph extends

below the baseline.

\n[.ce] Interpolate number of input lines remaining to be centered.

\n[.cht] Interpolate height of last glyph added to the environment. It is positive if the glyph extends

above the baseline.

\n[.color] Interpolate 1 if colors are enabled, 0 otherwise.

\n[.cp] Within a “do” request, interpolate the saved value of compatibility mode (see \n[.C] above).

groff 1.23.0 2 July 2023 18

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\n[.csk] Interpolate skew of last glyph added to the environment. The skew of a glyph is how far to

the right of the center of a glyph the center of an accent over that glyph should be placed.

\n[.ev] Interpolate name of current environment. This is a string-valued register.

\n[.fam] Interpolate name of default font family. This is a string-valued register.

\n[.fn] Interpolate resolved name of the selected font. This is a string-valued register.

\n[.fp] Interpolate next free font mounting position.

\n[.g] Interpolate 1. Test with “ if ” or ie to check whether GNU troff is the formatter.

\n[.height] Interpolate font height. See \H.

\n[.hla] Interpolate hyphenation language of the environment. This is a string-valued register.

\n[.hlc] Interpolate count of immediately preceding consecutive hyphenated lines in the environ-

ment.

\n[.hlm] Interpolate maximum number of consecutive hyphenated lines allowed in the environment.

\n[.hy] Interpolate hyphenation mode of the environment.

\n[.hym] Inteprolate hyphenation margin of the environment.

\n[.hys] Interpolate hyphenation space adjustment threshold of the environment.

\n[.in] Interpolate indentation amount applicable to the pending output line.

\n[.int] Interpolate 1 if the previous output line was interrupted (ended with \c), 0 otherwise.

\n[.kern] Interpolate 1 if pairwise kerning is enabled, 0 otherwise.

\n[.lg] Interpolate ligature mode.

\n[.linetabs] Interpolate 1 if line-tabs mode is enabled, 0 otherwise.

\n[.ll] Interpolate line length applicable to the pending output line.

\n[.lt] Interpolate title line length.

\n[.m] Interpolate name of the selected stroke color. This is a string-valued register.

\n[.M] Interpolate name of the selected fill color. This is a string-valued register.

\n[.ne] Interpolate amount of space demanded by the most recent ne request that caused a page lo-

cation trap to be sprung. See \n[.trunc].

\n[.nm] Interpolate 1 if output line numbering is enabled (even if temporarily suppressed), 0 other-

wise.

\n[.ns] Interpolate 1 if no-space mode is enabled, 0 otherwise.

\n[.O] Interpolate output suppression level. See \O.

\n[.P] Interpolate 1 if the current page is selected for output. See −o command-line option to

troff (1).

\n[.pe] Interpolate 1 during page ejection, 0 otherwise.

\n[.pn] Interpolate next page number (either that set by pn, or that of the current page plus 1).

\n[.ps] Interpolate type size in scaled points.

\n[.psr] Interpolate most recently requested type size in scaled points.

\n[.pvs] Interpolate post-vertical line spacing amount.

\n[.rj] Interpolate number of input lines remaining to be right-aligned.

\n[.slant] Interpolate font slant. See \S.

groff 1.23.0 2 July 2023 19

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\n[.sr] Interpolate most recently requested type size in points as a decimal fraction. This is a string-

valued register.

\n[.ss]
\n[.sss] Interpolate values of minimal inter-word space and additional inter-sentence space, respec-

tively, in twelfths of the space width of the selected font.

\n[.sty] Interpolate selected abstract font style, if any. This is a string-valued register.

\n[.tabs] Interpolate representation of the tab stop settings in a form suitable for passage to the ta re-

quest.

\n[.trunc] Interpolate amount of vertical space truncated by the most recently sprung page location

trap, or, if the trap was sprung by an ne request, minus the amount of vertical motion pro-

duced by the ne request. In other words, at the point a trap is sprung, \n[.trunc] represents

the difference of what the vertical position would have been but for the trap, and what the

vertical position actually is. See \n[.ne].

\n[.U] Interpolate 1 if in unsafe mode, 0 otherwise. See −U command-line option to troff (1).

\n[.vpt] Interpolate 1 if vertical position traps are enabled, 0 otherwise.

\n[.warn] Interpolate warning mode. See section “Warnings” of troff (1).

\n[.x] Interpolate major version number of the running troff formatter. For example, if the version

number is 1.23.0, then \n[.x] contains 1.

\n[.y] Interpolate minor version number of the running troff formatter. For example, if the version

number is 1.23.0, then \n[.y] contains 23.

\n[.Y] Interpolate revision number of the running troff formatter. For example, if the version num-

ber is 1.23.0, then \n[.Y] contains 0.

\n[.zoom] Interpolate magnification of font, in thousandths, or 0 if magnification unused. See fzoom.

The following (writable) registers are set by the psbb request.

\n[llx]
\n[lly]
\n[urx]
\n[ury] Interpolate the (upper, lower, left, right) bounding box values (in PostScript units) of the most re-

cently processed PostScript image.

The following (writable) registers are set by the \w escape sequence.

\n[rst]
\n[rsb] Like \n[st] and \n[sb], but taking account of the heights and depths of glyphs. In other words,

these registers store the highest and lowest vertical positions attained by the argument formatted

by the \w escape sequence, doing what AT&T troff documented \n[st] and \n[sb] as doing.

\n[ssc] The amount of horizontal space (possibly negative) that should be added to the last glyph before a

subscript.

\n[skw] How far to right of the center of the last glyph in the \w argument, the center of an accent from a

roman font should be placed over that glyph.

Other writable registers are as follows. Those relating to date and time are initialized using localtime(3) at

formatter startup.

\n[c.] Interpolate input line number. \n[.c] is a read-only alias of this register.

\n[hours] Interpolate number of hours elapsed since midnight.

\n[hp] Interpolate horizontal position relative to that at the start of the input line.

groff 1.23.0 2 July 2023 20

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\n[lsn]
\n[lss] Interpolate count of leading spaces on input line and amount of corresponding horizontal

motion, respectively.

\n[minutes] Interpolate number of minutes elapsed in the hour.

\n[seconds] Interpolate number of seconds elapsed in the minute.

\n[systat] Interpolate return value of system(3) function executed by most recent sy request.

\n[slimit] Interpolates maximum quantity of objects on troff ’s internal input stack (default: 1000). If

non-positive, there is no limit: recursion can continue until program memory is exhausted.

\n[year] Interpolate Gregorian year. AT&T troff ’s \[yr] interpolates the Gregorian year minus 1900.

Miscellaneous
GNU troff predefines one string, .T, containing the argument given to the −T command-line option, namely

the output device (for example, pdf or utf8). The (read-only) register .T interpolates 1 if GNU troff is run

with the −T command-line option, and 0 otherwise.

A font not listed in the output device’s DESC file’s fonts directive is automatically mounted at the next

available font position when it is selected. If you mount a font explicitly with the fp request, you should do

so on the first unused position, which can be found in the .fp register.

Unparameterized string interpolation does not conceal the arguments to a macro being interpreted. Thus, in

a macro definition, the call of another macro with the existing argument list,

.xx \\$@

is more efficiently done with

*[xx]\\

(that is, with string interpolation). The trailing backslashes prevent the final newline in the macro definition

from being interpolated, potentially putting an unwanted blank line on the output. See section “Punning

Names” in groff (7).

If a font description file contains pairwise kerning information, glyphs from that font are kerned. Kerning

between two glyphs can be inhibited by placing a dummy character \& between them.

GNU troff keeps track of the nesting depth of escape sequence interpolations and other uses of delimiters,

as in the tl request and the output comparison operator (that is, input like 'foo'bar' as a conditional expres-

sion), so the only characters you need to avoid using as delimiters are those that appear in the arguments

you input, not any that result from interpolation. Typically, ' works fine. Use visible characters as delim-

iters in GNU troff , not “ASCII” controls like BEL (Control+G). The implementation of \$@ ensures that

the double quotes surrounding an argument appear at an interpolation depth different from that of the argu-

ments themselves. Similarly, in bracket-form escape sequences like \f[ZCMI], a right bracket] does not

end the sequence unless it occurs at the same interpolation depth as the opening [, so input like

\f[*[my-family]*[my-style]]
works as desired. In compatibility mode, no attention is paid to the interpolation depth.

In GNU troff , the tr request can map characters to the unbreakable space escape sequence \~ as a special

case (tr normally operates only on characters). This feature replaces the odd-parity tr mapping trick used

in AT&T troff documents, where a character, often ~, was “sacrificed” by mapping it to “nothing”, drafting

it into use as an unadjustable, unbreakable space. (This feature was gratuitous even in early AT&T troff,

which supported the \space escape sequence by 1976.) Often, it makes more sense to use GNU troff ’s \~
escape sequence instead, which has been adopted by every other active troff implementation except that of

Illumos, as well as by the non-troff mandoc. Translation of a character to \~ is unnecessary.

GNU troff permits tabs and spaces after the first dot on a control line that ends a macro definition.

.if t \{\

. de bar

. nop Hello, I'm 'bar'.

. .

.\}

groff 1.23.0 2 July 2023 21

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

Formatter output
The page description language output by GNU troff is modeled after that used by AT&T troff once the lat-

ter adopted a device-independent approach in the early 1980s. Only the differences are documented here.

For a fuller discussion, see groff_out(5).

Glyph and font names can be of arbitrary length; postprocessors should not assume that they are at most

two characters. A glyph to be formatted is always drawn from the current font; in contrast to AT&T device-

independent troff , drivers need not search special fonts to find a glyph.

Units
The argument to the s command is in scaled points (units of points/n, where n is the argument to the

sizescale command in the DESC file). The argument to the “x H” command is also in scaled points.

Simple commands
If the tcommand directive is present in the output device’s DESC file, GNU troff employs the following

two commands.

t xyz. . . Typeset word xyz; that is, set a sequence of ordinary glyphs named x, y, z, . . . , terminated by a

space or newline; an optional second integer argument is ignored (this allows the formatter to gen-

erate an even number of arguments). Each glyph is set at the current drawing position, and the po-

sition is then advanced horizontally by the glyph’s width. A glyph’s width is read from its metrics

in the font description file, scaled to the current type size, and rounded to a multiple of the hori-

zontal motion quantum. Use the C command to emplace glyphs of special characters.

u n xyz. . .

Typeset word xyz with track kerning. As t, but after placing each glyph, the drawing position is

further advanced horizontally by n basic units.

New commands implement color support.

mc cyan magenta yellow

md
mg gray

mk cyan magenta yellow black

mr red green blue

Set the components of the stroke color with respect to various color spaces. md resets the stroke

color to the default value. The arguments are integers in the range 0 to 65535.

A new device control subcommand is available.

x u n If n is 1, start underlining of spaces. If n is 0, stop underlining of spaces. This facility is needed

for the cu request in nroff mode and is ignored otherwise.

Extended drawing commands
GNU pic does not produce troff escape sequences employing these extensions if its −n option is given.

Df n Set the shade of gray used to fill geometric objects to n, which must be an integer. 0 corresponds

to white and 1000 to black. A grayscale ramp spans the two. A value outside this range uses the

stroke color as the fill color. The fill color is opaque. Normally the default is black, but some dri-

vers may provide a way of changing this. Df is obsolete since 2002, superseded by DFg below.

The corresponding \D'f ' escape sequence should not be used: its argument is rounded to an integer

multiple of the horizontal motion quantum, which can limit the precision of n.

DC d Draw a filled circle of diameter d with its leftmost point at the drawing position.

DE h v Draw a filled ellipse, of horizontal axis h and vertical axis v, with its leftmost point at the drawing

position.

delim $$

Dp $dx sub 1 ˜ dy sub 1 ˜ ldots ˜ dx sub n ˜ dy sub n$

Draw a polygon with, for $i = 1 , ldots , n + 1$, its ith vertex at the drawing position $+ sum from

{ j = 1 } to { i - 1 } (dx sub j , dy sub j)$. groff output drivers automatically close polygons,

groff 1.23.0 2 July 2023 22

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

drawing a line from $(dx sub n , dy sub n)$ back to $(dx sub 1 , dy sub 1)$. The drawing posi-

tion is left at the last specified vertex, but this may change in a future version of GNU troff . Heir-

loom Doctools troff , like DWB troff , by default does not close the polygon. In its groff compati-

bility mode, Heirloom closes the polygon but leaves the drawing position unchanged—that is, at

the polygon’s initial drawing position.

At the moment, GNU pic uses this command only to generate triangles and rectangles.

DP $dx sub 1 ˜ dy sub 1 ˜ ldots ˜ dx sub n ˜ dy sub n$

As Dp, but draw a filled rather than a stroked polygon.

Dt n Set the line thickness to n basic units. AT&T troff output drivers use a thickness proportional to

the type size; this is the GNU troff default. A negative n requests this explicitly. An n of zero se-

lects the smallest available line thickness.

A difficulty arises in how the drawing position should be changed after the execution of these commands.

This has little importance to most users, since the output of GNU grn and pic does not depend on it. Given

a drawing command of the form Dz $x sub 1 ˜ y sub 1 ˜ ldots ˜ x sub n ˜ y sub n$, where z is not c or e,

AT&T troff treats each $x sub i$ as a horizontal motion, each $y sub i$ as a vertical one, and therefore as-

sumes that the width of the drawn object is $sum from { i = 1 } to n x sub i$, and its height is $sum from { i

= 1 } to n y sub i$. (Verify its assumption about height by examining the st and sb registers after using

such a drawing command in a \w escape sequence). For the sake of compatibility, GNU troff also follows

this rule, even though it frustrates extensions to the D command that set drawing parameters rather than ren-

dering objects, producing ugly results in the case of Dt and Df, or otherwise don’t parameterize objects as a

series of vertices, as with GNU troff ’s filled ellipse, DE. Thus after executing a D command of the form

Dz $x sub 1 ˜ y sub 1 ˜ ldots ˜ x sub n ˜ y sub n$, the drawing position should be increased by $(sum from

{ i = 1 } to n x sub i , sum from { i = 1 } to n y sub i)$. delim off In a future release, GNU troff and its

output drivers may abandon the application of this assumption to drawing commands not explicitly speci-

fied in the AT&T “Troff User’s Manual”.

Fill color selection is implemented with another set of extensions.

DFc cyan magenta yellow

DFd
DFg gray

DFk cyan magenta yellow black

DFr red green blue

Set the components of the fill color as described under the \M escape sequence above. DFd re-

stores the device’s default fill color. The drawing position is not updated, in contrast to Df.

Device control syntax extension
GNU troff introduces a line continuation convention, permitting the argument to the x X command to con-

tain newlines. A newline in the input is transformed to the sequence “newline+”. When interpreting an x X
command, a postprocessor should therefore be prepared for a plus sign after a newline; if it occurs, preserve

the newline, discard the plus sign, and continue to collect the input into the argument of the x X command.

A newline not followed by a plus sign terminates the x X command. An application of this feature is the

embedding of PostScript or PDF language command streams into troff output.

GNU troff guarantees that the first three output commands it emits are as follows.

x T device

x res n h v

x init

Debugging
In addition to AT&T troff ’s debugging features, GNU troff emits more error diagnostics when syntactical

or semantic nonsense is encountered and supports several warning categories; the output of these can be se-

lected with warn. Also see the −E, −w, and −W options of troff (1). Backtraces can be automatically pro-

duced when errors or warnings occur (the −b option of troff (1)) or generated on demand (backtrace).

groff also adds more flexible diagnostic output requests (tmc and tm1). More aspects of formatter state

groff 1.23.0 2 July 2023 23

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

can be examined with requests that write lists of defined registers (pnr), environments (pev), and page loca-

tion traps (ptr) to the standard error stream.

Implementation differences
GNU troff ’s features sometimes cause incompatibilities with documents written assuming old implementa-

tions of troff . Some GNU extensions to troff are supported by other implementations.

When adjusting to both margins, AT&T troff at first adjusts spaces starting from the right; GNU troff be-

gins from the left. Both implementations adjust spaces from opposite ends on alternating output lines to

prevent “rivers” in the text.

GNU troff does not always hyphenate words as AT&T troff does. The AT&T implementation uses a set of

hard-coded rules specific to U.S. English, while GNU troff uses language-specific hyphenation pattern files

derived from TEX. In some versions of troff there was limited space to store hyphenation exceptions (argu-

ments to the hw request); GNU troff has no such restriction.

Long names may be GNU troff ’s most obvious innovation. AT&T troff interprets “.dsabcd” as defining a

string “ab” with contents “cd”. Normally, GNU troff interprets this as a call of a macro named “dsabcd”.

AT&T troff also interprets *[and \n[as an interpolation of a string or register, respectively, called “[”. In

GNU troff , howev er, the “[” is normally interpreted as beginning the enclosure of a long identifier. In com-

patibility mode, GNU troff interprets names in the traditional way, which means that they are limited to one

or two characters. See the −C option in troff (1) and, above, the .C and .cp registers, and cp and “do” re-

quests, for more on compatibility mode.

The register \n[.cp] is specialized and may require a statement of rationale. When writing macro packages

or documents that use GNU troff features and which may be mixed with other packages or documents that

do not—common scenarios include serial processing of man pages or use of the “so” or mso requests—you

may desire correct operation regardless of compatibility mode enablement in the surrounding context. It

may occur to you to save the existing value of \n(.C into a register, say, _C, at the beginning of your file,

turn compatibility mode off with “.cp 0”, then restore it from that register at the end with “.cp \n(_C”. At

the same time, a modular design of a document or macro package may lead you to multiple layers of inclu-

sion. You cannot use the same register name everywhere lest you “clobber” the value from a preceding or

enclosing context. The two-character register name space of AT&T troff is confining and mnemonically

challenging; you may wish to use GNU troff ’s more capacious name space. However, attempting “.nr
_my_saved_C \n(.C” will not work in compatibility mode; the register name is too long. “This is exactly

what .do is for,” you think, “.do nr _my_saved_C \n(.C”. The foregoing will always save zero to your reg-

ister, because “do” turns compatibility mode off while it interprets its argument list. What you need is:

.do nr _my_saved_C \n[.cp]

.cp 0
at the beginning of your file, followed by

.cp \n[_my_saved_C]

.do rr _my_saved_C
at the end. As in the C language, we all have to share one big name space, so choose a register name that is

unlikely to collide with other uses.

The existence of the .T string is a common feature of post-CSTR #54 troff s—DWB 3.3, Solaris, Heirloom

Doctools, and Plan 9 troff all support it—but valid values are specific to each implementation. The behav-

ior of the .T register in GNU troff differs from AT&T troff , which interpolated 1 only if nroff was the for-

matter and was called with −T.

The lf request sets the number of the current input line in AT&T troff , and the next in GNU troff .

AT&T troff had only environments named “0”, “1”, and “2”. In GNU troff , any number of environments

may exist, using any valid identifiers for their names.

GNU troff normally tracks the interpolation depth of escape sequence parameters and other delimited struc-

tures, but not in compatibility mode. See section “Miscellaneous” above.

In compatibility mode, the escape sequences \f, \H, \m, \M, \R, \s, and \S are transparent at the beginning

of an input line for the purpose of recognizing a control character, because they modify formatter state (\R)

groff 1.23.0 2 July 2023 24

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

or properties of the environment (the rest) and therefore do not create output nodes. For example, this code

produces bold output in both cases, but the text differs,

.de xx '
Hello!
..
\fB.xx\fP

formatting “.xx” normally and “Hello!” in compatibility mode.

GNU troff request names unrecognized by other troff implementations will likely be ignored; escape se-

quences that are GNU troff extensions are liable to format their function selector character. For example,

the adjustable, non-breaking space escape sequence \~ is also supported by Heirloom Doctools troff

050915 (September 2005), mandoc 1.9.5 (2009-09-21), neatroff (commit 1c6ab0f6e, 2016-09-13), and

Plan 9 from User Space troff (commit 93f8143600, 2022-08-12), but not by Solaris/Illumos troff s, which

will render it as ~.

GNU troff does not allow the use of the escape sequences \|, \^, \&, \{, \}, \space, \', \`, \−, _, \!, \%, or \c
in identifiers; AT&T troff does. The \A escape sequence (see subsection “Escape sequences” above) may

be helpful in avoiding their use.

Normally, the syntax form \sn accepts only a single character (a digit) for n, consistently with other forms

that originated in AT&T troff , like *, \$, \f, \g, \k, \n, and \z. In compatibility mode only, a non-zero n

must be in the range 4–39. Legacy documents relying upon this quirk of parsing should be migrated to an-

other \s form. [Background: The Graphic Systems C/A/T phototypesetter (the original device target for

AT&T troff) supported only a few discrete type sizes in the range 6–36 points, so Ossanna contrived a spe-

cial case in the parser to do what the user must have meant. Kernighan warned of this in the 1992 revision

of CSTR #54 (§2.3), and more recently, McIlroy referred to it as a “living fossil”.]

Fractional type sizes cause one noteworthy incompatibility. In AT&T troff the ps request ignores scaling

units and thus “.ps 10u” sets the type size to 10 points, whereas in GNU troff it sets the type size to

10 scaled points, which may be a much smaller measurement. See subsection “Fractional type sizes and

new scaling units” above.

The ab request differs from AT&T troff : GNU troff writes no message to the standard error stream if no ar-

guments are given, and it exits with a failure status instead of a successful one.

The bp request differs from AT&T troff : GNU troff does not accept a scaling unit on the argument, a page

number; the former (somewhat uselessly) does.

In AT&T troff the pm request reports macro, string, and diversion sizes in units of 128-byte blocks, and an

argument reduces the report to a sum of the above in the same units. GNU troff ignores any arguments and

reports the sizes in bytes.

Unlike AT&T troff , GNU troff does not ignore the ss request if the output is a terminal device; instead, the

values of minimum inter-word and additional inter-sentence space are each rounded down to the nearest

multiple of 12.

In GNU troff there is a fundamental difference between (unformatted) characters and (formatted) glyphs.

Everything that affects how a glyph is output is stored with the glyph node; once a glyph node has been

constructed, it is unaffected by any subsequent requests that are executed, including bd, cs, tkf, tr, or fp re-

quests. Normally, glyphs are constructed from characters immediately before the glyph is added to an out-

put line. Macros, diversions, and strings are all, in fact, the same type of object; they contain a sequence of

intermixed character and glyph nodes. Special characters transform from one to the other: before being

added to the output, they behave as characters; afterward, they are glyphs. A glyph node does not behave

like a character node when it is processed by a macro: it does not inherit any of the special properties that

the character from which it was constructed might have had. For example, the input

groff 1.23.0 2 July 2023 25

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.di x
\\\\
.br
.di
.x

produces “\\” in GNU troff . Each pair of backslashes becomes one backslash glyph; the resulting back-

slashes are thus not interpreted as escape characters when they are reread as the diversion is output. AT&T

troff would interpret them as escape characters when rereading them and end up printing one “\”.

One way to format a backslash in most documents is with the \e escape sequence; this formats the glyph of

the current escape character, reg ardless of whether it is used in a diversion; it also works in both GNU troff

and AT&T troff . (Naturally, if you’ve changed the escape character, you need to prefix the “e” with what-

ev er it is—and you’ll likely get something other than a backslash in the output.)

The other correct way, appropriate in contexts independent of the backslash’s common use as a roff escape

character—perhaps in discussion of character sets or other programming languages—is the character es-

cape \(rs or \[rs], for “reverse solidus”, from its name in the ECMA-6 (ISO/IEC 646) standard. [This es-

cape sequence is not portable to AT&T troff , but is to its lineal descendant, Heirloom Doctools troff , as of

its 060716 release (July 2006).]

To store an escape sequence in a diversion that is interpreted when the diversion is reread, either use the tra-

ditional \! transparent output facility, or, if this is unsuitable, the new \? escape sequence. See subsection

“Escape sequences” above and sections “Diversions” and “gtroff Internals” in Groff: The GNU Implementa-

tion of troff , the groff Te xinfo manual.

In the somewhat pathological case where a diversion exists containing a partially collected line and a par-

tially collected line at the top-level div ersion has never existed, AT&T troff will output the partially col-

lected line at the end of input; GNU troff will not.

Formatter output incompatibilities
Its extensions notwithstanding, the groff intermediate output format has some incompatibilities with that of

AT&T troff , but better compatibility is sought; problem reports and patches are welcome. The following

incompatibilities are known.

• The drawing position after rendering polygons is inconsistent with AT&T troff practice. Other imple-

mentations have div erged on this point as well.

• The output cannot be easily rescaled to other devices as AT&T troff ’s could.

Authors
This document was written by James Clark 〈jjc@jclark.com〉 , Werner Lemberg 〈wl@gnu.org〉 , Bernd

Warken 〈groff−bernd.warken−72@web.de〉 , and G. Branden Robinson 〈g.branden.robinson@gmail.com〉 .

See also
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff

manual. You can browse it interactively with “info groff”.

“Troff User’s Manual” by Joseph F. Ossanna, 1976 (revised by Brian W. Kernighan, 1992), AT&T Bell

Laboratories Computing Science Technical Report No. 54, widely called simply “CSTR #54”, documents

the language, device and font description file formats, and output format referred to collectively in groff

documentation as AT&T troff .

“A Typesetter-independent TROFF” by Brian W. Kernighan, 1982, AT&T Bell Laboratories Computing

Science Technical Report No. 97, provides additional insights into the device and font description file for-

mats and output format.

groff (1), groff (7), roff (7)

groff 1.23.0 2 July 2023 26

