
groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Name

groff_mdoc — compose BSD-style manual (man) pages with GNU roff

Synopsis

groff −mdoc file . . .

Description

The GNU implementation of the mdoc macro package is part of the groff(1) document formatting system.
mdoc is a structurally- and semantically-oriented package for writing Unix manual pages with troff(1). Its
predecessor, the man(7) package, primarily addressed page layout and presentational concerns, leaving the
selection of fonts and other typesetting details to the individual author. This discretion has led to divergent
styling practices among authors using it.

mdoc organizes its macros into domains. The page structure domain lays out the page and comprises titles,
section headings, displays, and lists. The general text domain supplies macros to quote or style text, or to
interpolate common noun phrases. The manual domain offers semantic macros corresponding to the termi-
nology used by practitioners in discussion of Unix commands, routines, and files. Manual domain macros
distinguish command-line arguments and options, function names, function parameters, pathnames, vari-
ables, cross references to other manual pages, and so on. These terms are meaningful both to the author
and the readers of a manual page. It is hoped that the resulting increased consistency of the man page cor-
pus will enable easier translation to future documentation tools.

Throughout Unix documentation, a manual entry is referred to simply as a “man page”, regardless of its
length, without gendered implication, and irrespective of the macro package selected for its composition.

Getting started

The mdoc package attempts to simplify man page authorship and maintenance without requiring mastery of
the roff language. This document presents only essential facts about roff . For further background, including
a discussion of basic typographical concepts like “breaking”, “filling”, and “adjustment”, see roff(7). Spe-
cialized units of measurement also arise, namely ens, vees, inches, and points, abbreviated “n”, “v”, “i”,
and “p”, respectively; see section “Measurements” of groff(7).

For brief examples, we employ an arrow notation illustrating a transformation of input on the left to ren-
dered output on the right. Consider the .Dq macro, which double-quotes its arguments.

.Dq man page → “man page”

Usage

An mdoc macro is called by placing the roff control character, ‘.’ (dot) at the beginning of a line followed
by its name. In this document, we often discuss a macro name with this leading dot to identify it clearly,
but the dot is not part of its name. Space or tab characters can separate the dot from the macro name. Ar-
guments may follow, separated from the macro name and each other by spaces, but not tabs. The dot at the
beginning of the line prepares the formatter to expect a macro name. A dot followed immediately by a
newline is ignored; this is called the empty request. To begin an input line with a dot (or a neutral apostro-
phe ‘'’) in some context other than a macro call, precede it with the ‘\&’ escape sequence; this is a dummy
character, not formatted for output. The backslash is the roff escape character; it can appear anywhere and
it always followed by at least one more character. If followed by a newline, the backslash escapes the input
line break; you can thus keep input lines to a reasonable length without affecting their interpretation.

Macros in GNU troff accept an unlimited number of arguments, in contrast to other troffs that often can’t
handle more than nine. In limited cases, arguments may be continued or extended on the next input line
without resort to the ‘\newline’ escape sequence; see subsection “Extended arguments” below. Neutral
double quotes " can be used to group multiple words into an argument; see subsection “Passing space
characters in an argument” below.

Most of mdoc’s general text and manual domain macros parse their argument lists for callable macro
names. This means that an argument in the list matching a general text or manual domain macro name (and
defined to be callable) will be called with the remaining arguments when it is encountered. In such cases,
the argument, although the name of a macro, is not preceded by a dot. Macro calls can thus be nested. This
approach to macro argument processing is a unique characteristic of the mdoc package, not a general fea-
ture of roff syntax.

groff 1.23.0 2 July 2023 1

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

For example, the option macro, .Op, may call the flag and argument macros, .Fl and .Ar, to specify an op-
tional flag with an argument.

.Op Fl s Ar bytes → [−s bytes]
To prevent a word from being interpreted as a macro name, precede it with the dummy character.

.Op \&Fl s \&Ar bytes → [Fl s Ar bytes]

In this document, macros whose argument lists are parsed for callable arguments are referred to as parsed,
and those that may be called from an argument list are referred to as callable. This usage is a technical faux

pas, since all mdoc macros are in fact interpreted (unless prevented with ‘\&’), but as it is cumbersome to
constantly refer to macros as “being able to call other macros”, we employ the term “parsed” instead. Ex-
cept where explicitly stated, all mdoc macros are parsed and callable.

In the following, we term an mdoc macro that starts a line (with a leading dot) a command if a distinction
from those appearing as arguments of other macros is necessary.

Passing space characters in an argument

Sometimes it is desirable to give a macro an argument containing one or more space characters, for instance
to specify a particular arrangement of arguments demanded by the macro. Additionally, quoting multi-
word arguments that are to be treated the same makes mdoc work faster; macros that parse arguments do so
once (at most) for each. For example, the function command .Fn expects its first argument to be the name
of a function and any remaining arguments to be function parameters. Because C language standards man-
date the inclusion of types and identifiers in the parameter lists of function definitions, each ‘Fn’ parameter
after the first will be at least two words in length, as in “int foo”.

There are a few ways to embed a space in a macro argument. One is to use the unadjustable space escape
sequence \space. The formatter treats this escape sequence as if it were any other printable character, and
will not break a line there as it would a word space when the output line is full. This method is useful for
macro arguments that are not expected to straddle an output line boundary, but has a drawback: this space
does not adjust as others do when the output line is formatted. An alternative is to use the unbreakable
space escape sequence, ‘\~’, which cannot break but does adjust. This groff extension is widely but not
perfectly portable. Another method is to enclose the string in double quotes.

.Fn fetch char\ ∗str → fetch(char ∗str)

.Fn fetch char\~∗str → fetch(char ∗str)

.Fn fetch "char ∗str" → fetch(char ∗str)
If the ‘\’ before the space in the first example or the double quotes in the third example were omitted, .Fn
would see three arguments, and the result would contain an undesired comma.

.Fn fetch char ∗str → fetch(char , ∗str)

Trailing space characters

It is wise to remove trailing spaces from the ends of input lines. Should the need arise to put a formattable
space at the end of a line, do so with the unadjustable or unbreakable space escape sequences.

Formatting the backslash glyph

When you need the roff escape character ‘\’ to appear in the output, use ‘\e’ or \(rs instead. Techni-
cally, ‘\e’ formats the current escape character; it works reliably as long as no roff request is used to
change it, which should never happen in man pages. \(rs is a groff special character escape sequence that
explicitly formats the “reverse solidus” (backslash) glyph.

Other possible pitfalls

groff mdoc warns when an empty input line is found outside of a display, a topic presented in subsection
“Examples and displays” below. Use empty requests to space the source document for maintenance.

Leading spaces cause a break and are formatted. Av oid this behaviour if possible. Similarly, do not put
more than one space between words in an ordinary text line; they are not “normalized” to a single space as
other text formatters might do.

Don’t try to use the neutral double quote character ‘"’ to represent itself in an argument. Use the special
character escape sequence \(dq to format it. Further, this glyph should not be used for conventional quo-
tation; mdoc offers several quotation macros. See subsection “Enclosure and quoting macros” below.

groff 1.23.0 2 July 2023 2

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

The formatter attempts to detect the ends of sentences and by default puts the equivalent of two spaces be-
tween sentences on the same output line; see roff(7). To defeat this detection in a parsed list of macro argu-
ments, put ‘\&’ before the punctuation mark. Thus,

The
.Ql .
character.
.Pp
The
.Ql \&.
character.
.Pp
.No test .
test
.Pp
.No test.
test

gives
The ‘’. character

The ‘.’ character.

test. test

test. test
as output. As can be seen in the first and third output lines, mdoc handles punctuation characters specially
in macro arguments. This will be explained in section “General syntax” below.

A comment in the source file of a man page can begin with ‘.\"’ at the start of an input line, ‘\"’ after
other input, or ‘\#’ anywhere (the last is a groff extension); the remainder of any such line is ignored.

A man page template

Use mdoc to construct a man page from the following template.

.\" The following three macro calls are required.

.Dd date

.Dt topic [section-identifier [section-keyword-or-title]]

.Os [package-or-operating system [version-or-release]]

.Sh Name

.Nm topic

.Nd summary-description

.\" The next heading is used in sections 2 and 3.

.\" .Sh Library

.\" The next heading is used in sections 1-4, 6, 8, and 9.

.Sh Synopsis

.Sh Description

.\" Uncomment and populate the following sections as needed.

.\" .Sh "Implementation notes"

.\" The next heading is used in sections 2, 3, and 9.

.\" .Sh "Return values"

.\" The next heading is used in sections 1, 3, 6, and 8.

.\" .Sh Environment

.\" .Sh Files

.\" The next heading is used in sections 1, 6, and 8.

.\" .Sh "Exit status"

.\" .Sh Examples

.\" The next heading is used in sections 1, 4, 6, 8, and 9.

.\" .Sh Diagnostics

.\" .Sh Compatibility

groff 1.23.0 2 July 2023 3

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.\" The next heading is used in sections 2, 3, 4, and 9.

.\" .Sh Errors

.\" .Sh "See also"

.\" .Sh Standards

.\" .Sh History

.\" .Sh Authors

.\" .Sh Caveats

.\" .Sh Bugs

The first items in the template are the commands .Dd, .Dt, and .Os. They identify the page and are dis-
cussed below in section “Title macros”.

The remaining items in the template are section headings (.Sh); of which “Name” and “Description” are
mandatory. These headings are discussed in section “Page structure domain”, which follows section
“Manual domain”. Familiarize yourself with manual domain macros first; we use them to illustrate the use
of page structure domain macros.

Conventions

In the descriptions of macros below, square brackets surround optional arguments. An ellipsis (‘ . . .’) repre-
sents repetition of the preceding argument zero or more times. Alternative values of a parameter are sepa-
rated with ‘|’. If a mandatory parameter can take one of several alternative values, use braces to enclose the
set, with spaces and ‘|’ separating the items.

ztar {c | x} [−w [−y | −z]] [−f archive] member . . .
An alternative to using braces is to separately synopsize distinct operation modes, particularly if the list of
valid optional arguments is dependent on the user’s choice of a mandatory parameter.

ztar c [−w [−y | −z]] [−f archive] member . . .
ztar x [−w [−y | −z]] [−f archive] member . . .

Most macros affect subsequent arguments until another macro or a newline is encountered. For example,
‘.Li ls Bq Ar file’ doesn’t produce ‘ls [file]’, but ‘ls [file]’. Consequently, a warning
message is emitted for many commands if the first argument is itself a macro, since it cancels the effect of
the preceding one. On rare occasions, you might want to format a word along with surrounding brackets as
a literal.

.Li "ls [file]" → ls [file] # list any files named e, f, i, or l

Many macros possess an implicit width, used when they are contained in lists and displays. If you avoid re-
lying on these default measurements, you escape potential conflicts with site-local modifications of the
mdoc package. Explicit −width and −offset arguments to the .Bl and .Bd macros are preferable.

Title macros

We present the mandatory title macros first due to their importance even though they formally belong to
the page structure domain macros. They designate the topic, date of last revision, and the operating system
or software project associated with the page. Call each once at the beginning of the document. They popu-
late the page headers and footers, which are in roff parlance termed “titles”.

.Dd date

This first macro of any mdoc manual records the last modification date of the document source.
Arguments are concatenated and separated with space characters.

Historically, date was written in U.S. traditional format, “Month day , year” where Month is the
full month name in English, day an integer without a leading zero, and year the four-digit year.
This localism is not enforced, however. You may prefer ISO 8601 format, YYYY-MM-DD. A
date of the form ‘$Mdocdate: Month day year $’ is also recognized. It is used in
OpenBSD manuals to automatically insert the current date when committing.

This macro is neither callable nor parsed.

groff 1.23.0 2 July 2023 4

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Dt topic [section-identifier [section-keyword-or-title]]
topic is the subject of the man page. A section-identifier that begins with an integer in
the range 1–9 or is one of the words unass, draft, or paper selects a predefined section title.
This use of “section” has nothing to do with the section headings otherwise discussed in this page;
it arises from the organizational scheme of printed and bound Unix manuals.

In this implementation, the following titles are defined for integral section numbers.

1 General Commands Manual
2 System Calls Manual
3 Library Functions Manual
4 Kernel Interfaces Manual
5 File Formats Manual
6 Games Manual
7 Miscellaneous Information Manual
8 System Manager’s Manual
9 Kernel Developer’s Manual

A section title may be arbitrary or one of the following abbreviations.

USD User’s Supplementary Documents
PS1 Programmer’s Supplementary Documents
AMD Ancestral Manual Documents
SMM System Manager’s Manual
URM User’s Reference Manual
PRM Programmer’s Manual
KM Kernel Manual
IND Manual Master Index
LOCAL Local Manual
CON Contributed Software Manual

For compatibility, MMI can be used for IND, and LOC for LOCAL. Values from the previous table
will specify a new section title. If section-keyword-or-title designates a computer ar-
chitecture recognized by groff mdoc, its value is prepended to the default section title as specified
by the second parameter. By default, the following architecture keywords are defined.

acorn26, acorn32, algor, alpha, amd64, amiga, amigappc, arc, arm, arm26, arm32, armish, atari, aviion, beagle, bebox,

cats, cesfic, cobalt, dreamcast, emips, evbarm, evbmips, evbppc, evbsh3, ews4800mips, hp300, hp700, hpcarm,

hpcmips, hpcsh, hppa, hppa64, i386, ia64, ibmnws, iyonix, landisk, loongson, luna68k, luna88k, m68k, mac68k,

macppc, mips, mips64, mipsco, mmeye, mvme68k, mvme88k, mvmeppc, netwinder, news68k, newsmips, next68k,

ofppc, palm, pc532, playstation2, pmax, pmppc, powerpc, prep, rs6000, sandpoint, sbmips, sgi, sgimips, sh3, shark,

socppc, solbourne, sparc, sparc64, sun2, sun3, tahoe, vax, x68k, x86_64, xen, zaurus

If a section title is not determined after the above matches have been attempted,
section-keyword-or-title is used.

The effects of varying .Dt arguments on the page header content are shown below. Observe how
‘\&’ prevents the numeral 2 from being used to look up a predefined section title.

.Dt foo 2 → foo(2) System Calls Manual foo(2)

.Dt foo 2 m68k → foo(2) m68k System Calls Manual foo(2)

.Dt foo 2 baz → foo(2) System Calls Manual foo(2)

.Dt foo \&2 baz → foo(2) baz foo(2)

.Dt foo "" baz → foo baz foo

.Dt foo M Z80 → foo(M) Z80 foo(M)

roff strings define section titles and architecture identifiers. Site-specific additions might be found
in the file mdoc.local; see section “Files” below.

This macro is neither callable nor parsed.

groff 1.23.0 2 July 2023 5

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Os [operating-system-or-package-name [version-or-release]]
This macro associates the document with a software distribution. When composing a man page to
be included in the base installation of an operating system, do not provide an argument; mdoc will
supply it. In this implementation, that default is “FreeBSD 13.2”. It may be overridden in the site
configuration file, mdoc.local; see section “Files” below. A portable software package maintaining
its own man pages can supply its name and version number or release identifier as optional argu-
ments. A version-or-release argument should use the standard nomenclature for the software spec-
ified. In the following table, recognized version-or-release arguments for some predefined operat-
ing systems are listed. As with .Dt, site additions might be defined in mdoc.local.

ATT 7th, 7, III, 3, V, V.2, V.3, V.4

BSD 3, 4, 4.1, 4.2, 4.3, 4.3t, 4.3T, 4.3r, 4.3R, 4.4

NetBSD 0.8, 0.8a, 0.9, 0.9a, 1.0, 1.0a, 1.1, 1.2, 1.2a, 1.2b, 1.2c, 1.2d, 1.2e, 1.3, 1.3a,
1.4, 1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3, 1.6, 1.6.1, 1.6.2, 1.6.3, 2.0,
2.0.1, 2.0.2, 2.0.3, 2.1, 3.0, 3.0.1, 3.0.2, 3.0.3, 3.1, 3.1.1, 4.0, 4.0.1, 5.0, 5.0.1,
5.0.2, 5.1, 5.1.2, 5.1.3, 5.1.4, 5.2, 5.2.1, 5.2.2, 6.0, 6.0.1, 6.0.2, 6.0.3, 6.0.4,
6.0.5, 6.0.6, 6.1, 6.1.1, 6.1.2, 6.1.3, 6.1.4, 6.1.5, 7.0, 7.0.1, 7.0.2, 7.1, 7.1.1,
7.1.2, 7.2, 8.0, 8.1

FreeBSD 1.0, 1.1, 1.1.5, 1.1.5.1, 2.0, 2.0.5, 2.1, 2.1.5, 2.1.6, 2.1.7, 2.2, 2.2.1, 2.2.2,
2.2.5, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 4.0, 4.1, 4.1.1, 4.2,
4.3, 4.4, 4.5, 4.6, 4.6.2, 4.7, 4.8, 4.9, 4.10, 4.11, 5.0, 5.1, 5.2, 5.2.1, 5.3, 5.4,
5.5, 6.0, 6.1, 6.2, 6.3, 6.4, 7.0, 7.1, 7.2, 7.3, 7.4, 8.0, 8.1, 8.2, 8.3, 8.4, 9.0, 9.1,
9.2, 9.3, 10.0, 10.1, 10.2, 10.3, 10.4, 11.0, 11.1, 11.2, 11.3, 12.0, 12.1

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7,
3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5,
5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6

DragonFly 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.8.1, 1.9, 1.10, 1.11, 1.12, 1.12.2,
1.13, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.9.1, 2.10, 2.10.1, 2.11,
2.12, 2.13, 3.0, 3.0.1, 3.0.2, 3.1, 3.2, 3.2.1, 3.2.2, 3.3, 3.4, 3.4.1, 3.4.2, 3.4.3,
3.5, 3.6, 3.6.1, 3.6.2, 3.7, 3.8, 3.8.1, 3.8.2, 4.0, 4.0.1, 4.0.2, 4.0.3, 4.0.4, 4.0.5,
4.0.6, 4.1, 4.2, 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.3, 4.4, 4.4.1, 4.4.2, 4.4.3, 4.5, 4.6,
4.6.1, 4.6.2, 4.7, 4.8, 4.8.1, 4.9, 5.0, 5.0.1, 5.0.2, 5.1, 5.2, 5.2.1, 5.2.2, 5.3, 5.4,
5.4.1, 5.4.2, 5.4.3, 5.5, 5.6, 5.6.1, 5.6.2

Darwin 8.0.0, 8.1.0, 8.2.0, 8.3.0, 8.4.0, 8.5.0, 8.6.0, 8.7.0, 8.8.0, 8.9.0, 8.10.0, 8.11.0,
9.0.0, 9.1.0, 9.2.0, 9.3.0, 9.4.0, 9.5.0, 9.6.0, 9.7.0, 9.8.0, 10.0.0, 10.1.0, 10.2.0,
10.3.0, 10.4.0, 10.5.0, 10.6.0, 10.7.0, 10.8.0, 11.0.0, 11.1.0, 11.2.0, 11.3.0,
11.4.0, 11.5.0, 12.0.0, 12.1.0, 12.2.0, 13.0.0, 13.1.0, 13.2.0, 13.3.0, 13.4.0,
14.0.0, 14.1.0, 14.2.0, 14.3.0, 14.4.0, 14.5.0, 15.0.0, 15.1.0, 15.2.0, 15.3.0,
15.4.0, 15.5.0, 15.6.0, 16.0.0, 16.1.0, 16.2.0, 16.3.0, 16.4.0, 16.5.0, 16.6.0,
17.0.0, 17.1.0, 17.2.0, 17.3.0, 17.4.0, 17.5.0, 17.6.0, 17.7.0, 18.0.0, 18.1.0,
18.2.0, 18.3.0, 18.4.0, 18.5.0, 18.6.0, 18.7.0, 19.0.0, 19.1.0, 19.2.0

Historically, the first argument used with .Dt was BSD or ATT. An unrecognized version argu-
ment after ATT is replaced with “Unix”; for other predefined abbreviations, it is ignored and a
warning diagnostic emitted. Otherwise, unrecognized arguments are displayed verbatim in the
page footer. For instance, this page uses “.Os groff 1.23.0” whereas a locally produced
page might employ “.Os "UXYZ CS Department"”, omitting versioning.

This macro is neither callable nor parsed.

groff 1.23.0 2 July 2023 6

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Introduction to manual and general text domains

What’s in a Name . . .
The manual domain macro names are derived from the day to day informal language used to describe com-
mands, subroutines and related files. Slightly different variations of this language are used to describe the
three different aspects of writing a man page. First, there is the description of mdoc macro command us-
age. Second is the description of a Unix command with mdoc macros, and third, the description of a com-
mand to a user in the verbal sense; that is, discussion of a command in the text of a man page.

In the first case, troff macros are themselves a type of command; the general syntax for a troff command is:

.Xx argument1 argument2 ...

.Xx is a macro command, and anything following it are arguments to be processed. In the second case, the
description of a Unix command using the manual domain macros is a bit more involved; a typical
“Synopsis” command line might be displayed as:

filter [−flag] 〈infile〉 〈outfile〉

Here, filter is the command name and the bracketed string −flag is a flag argument designated as op-
tional by the option brackets. In mdoc terms, 〈infile〉 and 〈outfile〉 are called meta arguments; in this
example, the user has to replace the meta expressions given in angle brackets with real file names. Note
that in this document meta arguments are used to describe mdoc commands; in most man pages, meta vari-
ables are not specifically written with angle brackets. The macros that formatted the above example:

.Nm filter

.Op Fl flag

.Ao Ar infile Ac Ao Ar outfile Ac

In the third case, discussion of commands and command syntax includes both examples above, but may add
more detail. The arguments 〈infile〉 and 〈outfile〉 from the example above might be referred to as
operands or file arguments. Some command-line argument lists are quite long:

make [−eiknqrstv] [−D variable] [−d flags] [−f makefile] [−I directory]
[−j max_jobs] [variable=value] [target . . .]

Here one might talk about the command make and qualify the argument, makefile, as an argument to the
flag, −f, or discuss the optional file operand target. In the verbal context, such detail can prevent confu-
sion, however the mdoc package does not have a macro for an argument to a flag. Instead the ‘Ar’ argu-
ment macro is used for an operand or file argument like target as well as an argument to a flag like
variable. The make command line was produced from:

.Nm make

.Op Fl eiknqrstv

.Op Fl D Ar variable

.Op Fl d Ar flags

.Op Fl f Ar makefile

.Op Fl I Ar directory

.Op Fl j Ar max_jobs

.Op Ar variable Ns = Ns Ar value

.Bk

.Op Ar target ...

.Ek

The .Bk and .Ek macros are explained in “Keeps”.

General Syntax

The manual domain and general text domain macros share a similar syntax with a few minor deviations;
most notably, .Ar, .Fl, .Nm, and .Pa differ only when called without arguments; and .Fn and .Xr im-
pose an order on their argument lists. All manual domain macros are capable of recognizing and properly
handling punctuation, provided each punctuation character is separated by a leading space. If a command
is given:

groff 1.23.0 2 July 2023 7

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Ar sptr, ptr),

The result is:

sptr, ptr),

The punctuation is not recognized and all is output in the font used by .Ar. If the punctuation is separated
by a leading white space:

.Ar sptr , ptr) ,

The result is:

sptr, ptr),

The punctuation is now recognized and output in the default font distinguishing it from the argument
strings. To remove the special meaning from a punctuation character, escape it with ‘\&’.

The following punctuation characters are recognized by mdoc:

. , : ; (
) [] ? !

troff is limited as a macro language, and has difficulty when presented with a string containing certain
mathematical, logical, or quotation character sequences:

{+,−,/,∗,%,<,>,<=,>=,=,==,&,`,',"}

The problem is that troff may assume it is supposed to actually perform the operation or evaluation sug-
gested by the characters. To prevent the accidental evaluation of these characters, escape them with ‘\&’.
Typical syntax is shown in the first manual domain macro displayed below, .Ad.

Manual domain

Addresses

The address macro identifies an address construct.

Usage: .Ad 〈address〉 . . .

.Ad addr1 addr1

.Ad addr1 . addr1.

.Ad addr1 , file2 addr1, file2

.Ad f1 , f2 , f3 : f1, f2, f3:

.Ad addr)) , addr)),

The default width is 12n.

Author Name

The .An macro is used to specify the name of the author of the item being documented, or the name of the
author of the actual manual page.

Usage: .An 〈author name〉 . . .

.An "Joe Author" Joe Author

.An "Joe Author" , Joe Author,

.An "Joe Author" Aq nobody@FreeBSD.org
Joe Author <nobody@FreeBSD.org>

.An "Joe Author")) , Joe Author)),

The default width is 12n.

In a section titled “Authors”, ‘An’ causes a break, allowing each new name to appear on its own line. If
this is not desirable,

.An −nosplit

groff 1.23.0 2 July 2023 8

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

call will turn this off. To turn splitting back on, write

.An −split

Arguments

The .Ar argument macro may be used whenever an argument is referenced. If called without arguments,
‘file ...’ is output. This places the ellipsis in italics, which is ugly and incorrect, and will be noticed
on terminals that underline text instead of using an oblique typeface. We recommend using .Ar file
No ... instead.

Usage: .Ar [〈argument〉] . . .

.Ar file ...

.Ar file No ...
file . . .

.Ar file1 file1

.Ar file1 . file1.

.Ar file1 file2 file1 file2

.Ar f1 f2 f3 : f1 f2 f3:

.Ar file)) , file)),

The default width is 12n.

Configuration Declaration (Section Four Only)

The .Cd macro is used to demonstrate a config(8) declaration for a device interface in a section four man-
ual.

Usage: .Cd 〈argument〉 . . .

.Cd "device le0 at scode?" device le0 at scode?

In a section titled “Synopsis”, ‘Cd’ causes a break before and after its arguments.

The default width is 12n.

Command Modifiers

The command modifier is identical to the .Fl (flag) command with the exception that the .Cm macro does
not assert a dash in front of every argument. Traditionally flags are marked by the preceding dash, however,
some commands or subsets of commands do not use them. Command modifiers may also be specified in
conjunction with interactive commands such as editor commands. See “Flags”.

The default width is 10n.

Defined Variables

A variable (or constant) that is defined in an include file is specified by the macro .Dv.

Usage: .Dv 〈defined-variable〉 . . .

.Dv MAXHOSTNAMELEN MAXHOSTNAMELEN

.Dv TIOCGPGRP) TIOCGPGRP)

The default width is 12n.

Errnos

The .Er errno macro specifies the error return value for section 2, 3, and 9 library routines. The second
example below shows .Er used with the .Bq general text domain macro, as it would be used in a section
two manual page.

Usage: .Er 〈errno type〉 . . .

.Er ENOENT ENOENT

.Er ENOENT) ; ENOENT);

.Bq Er ENOTDIR [ENOTDIR]

groff 1.23.0 2 July 2023 9

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

The default width is 17n.

Environment Variables

The .Ev macro specifies an environment variable.

Usage: .Ev 〈argument〉 . . .

.Ev DISPLAY DISPLAY

.Ev PATH . PATH.

.Ev PRINTER)) , PRINTER)),

The default width is 15n.

Flags

The .Fl macro handles command-line flags. It prepends a dash, ‘−’, to the flag. For interactive command
flags that are not prepended with a dash, the .Cm (command modifier) macro is identical, but without the
dash.

Usage: .Fl 〈argument〉 . . .

.Fl −

.Fl cfv −cfv

.Fl cfv . −cfv.

.Cm cfv . cfv.

.Fl s v t −s −v −t

.Fl − , −−,

.Fl xyz) , −xyz),

.Fl | − |

The .Fl macro without any arguments results in a dash representing stdin/stdout. Note that giving .Fl a
single dash will result in two dashes.

The default width is 12n.

Function Declarations

The .Fd macro is used in the “Synopsis” section with section two or three functions. It is neither callable
nor parsed.

Usage: .Fd 〈argument〉 . . .

.Fd "#include <sys/types.h>" #include <sys/types.h>

In a section titled “Synopsis”, ‘Fd’ causes a break if a function has already been presented and a break has
not occurred, leaving vertical space between one function declaration and the next.

In a section titled “Synopsis”, the ‘In’ macro represents the #include statement, and is the short form of
the above example. It specifies the C header file as being included in a C program. It also causes a break.

While not in the “Synopsis” section, it represents the header file enclosed in angle brackets.

Usage: .In 〈header file〉

.In stdio.h <stdio.h>

.In stdio.h <stdio.h>

Function Types

This macro is intended for the “Synopsis” section. It may be used anywhere else in the man page without
problems, but its main purpose is to present the function type (in BSD kernel normal form) for the
“Synopsis” of sections two and three. (It causes a break, allowing the function name to appear on the next
line.)

Usage: .Ft 〈type〉 . . .

.Ft struct stat struct stat

groff 1.23.0 2 July 2023 10

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Functions (Library Routines)

The .Fn macro is modeled on ANSI C conventions.

Usage: .Fn 〈function〉 [〈parameter〉] . . .

.Fn getchar getchar()

.Fn strlen) , strlen()),

.Fn align "char ∗ptr" , align(char ∗ptr),

Note that any call to another macro signals the end of the .Fn call (it will insert a closing parenthesis at
that point).

For functions with many parameters (which is rare), the macros .Fo (function open) and .Fc (function
close) may be used with .Fa (function argument).

Example:

.Ft int

.Fo res_mkquery

.Fa "int op"

.Fa "char ∗dname"

.Fa "int class"

.Fa "int type"

.Fa "char ∗data"

.Fa "int datalen"

.Fa "struct rrec ∗newrr"

.Fa "char ∗buf"

.Fa "int buflen"

.Fc

Produces:

int res_mkquery(int op , char ∗dname , int class , int type , char ∗data ,
int datalen , struct rrec ∗newrr , char ∗buf , int buflen)

Typically, in a “Synopsis” section, the function delcaration will begin the line. If more than one function is
presented in the “Synopsis” section and a function type has not been given, a break will occur, leaving ver-
tical space between the current and prior function names.

The default width values of .Fn and .Fo are 12n and 16n, respectively.

Function Arguments

The .Fa macro is used to refer to function arguments (parameters) outside of the “Synopsis” section of the
manual or inside the “Synopsis” section if the enclosure macros .Fo and .Fc instead of .Fn are used.
.Fa may also be used to refer to structure members.

Usage: .Fa 〈function argument〉 . . .

.Fa d_namlen)) , d_namlen)),

.Fa iov_len iov_len

The default width is 12n.

Return Values

The .Rv macro generates text for use in the “Return values” section.

Usage: .Rv [−std] [〈function〉 . . .]

For example, .Rv −std atexit produces:

The atexit() function returns the value 0 if successful; otherwise the value −1 is returned and the
global variable errno is set to indicate the error.

The −std option is valid only for manual page sections 2 and 3. Currently, this macro does nothing if
used without the −std flag.

groff 1.23.0 2 July 2023 11

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Exit Status

The .Ex macro generates text for use in the “Diagnostics” section.

Usage: .Ex [−std] [〈utility〉 . . .]

For example, .Ex −std cat produces:

The cat utility exits 0 on success, and >0 if an error occurs.

The −std option is valid only for manual page sections 1, 6 and 8. Currently, this macro does nothing if
used without the −std flag.

Interactive Commands

The .Ic macro designates an interactive or internal command.

Usage: .Ic 〈argument〉 . . .

.Ic :wq :wq

.Ic "do while {...}" do while {...}

.Ic setenv , unsetenv setenv, unsetenv

The default width is 12n.

Library Names

The .Lb macro is used to specify the library where a particular function is compiled in.

Usage: .Lb 〈argument〉 . . .

Av ailable arguments to .Lb and their results are:

libarchive Streaming Archive Library (libarchive, −larchive)
libarm ARM Architecture Library (libarm, −larm)
libarm32 ARM32 Architecture Library (libarm32, −larm32)
libbluetooth Bluetooth User Library (libbluetooth, −lbluetooth)
libbsm Basic Security Module Library (libbsm, −lbsm)
libc Standard C Library (libc, −lc)
libc_r Reentrant C Library (libc_r, −lc_r)
libcalendar Calendar Arithmetic Library (libcalendar, −lcalendar)
libcam Common Access Method User Library (libcam, −lcam)
libcdk Curses Development Kit Library (libcdk, −lcdk)
libcipher FreeSec Crypt Library (libcipher, −lcipher)
libcompat Compatibility Library (libcompat, −lcompat)
libcrypt Crypt Library (libcrypt, −lcrypt)
libcurses Curses Library (libcurses, −lcurses)
libdevinfo Device and Resource Information Utility Library (libdevinfo, −ldevinfo)
libdevstat Device Statistics Library (libdevstat, −ldevstat)
libdisk Interface to Slice and Partition Labels Library (libdisk, −ldisk)
libdwarf DWARF Access Library (libdwarf, −ldwarf)
libedit Line Editor and History Library (libedit, −ledit)
libelf ELF Parsing Library (libelf, −lelf)
libevent Event Notification Library (libevent, −levent)
libfetch File Transfer Library (libfetch, −lfetch)
libform Curses Form Library (libform, −lform)
libgeom Userland API Library for kernel GEOM subsystem (libgeom, −lgeom)
libgpib General-Purpose Instrument Bus (GPIB) library (libgpib, −lgpib)
libi386 i386 Architecture Library (libi386, −li386)
libintl Internationalized Message Handling Library (libintl, −lintl)
libipsec IPsec Policy Control Library (libipsec, −lipsec)
libipx IPX Address Conversion Support Library (libipx, −lipx)

groff 1.23.0 2 July 2023 12

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

libiscsi iSCSI protocol library (libiscsi, −liscsi)
libjail Jail Library (libjail, −ljail)
libkiconv Kernel side iconv library (libkiconv, −lkiconv)
libkse N:M Threading Library (libkse, −lkse)
libkvm Kernel Data Access Library (libkvm, −lkvm)
libm Math Library (libm, −lm)
libm68k m68k Architecture Library (libm68k, −lm68k)
libmagic Magic Number Recognition Library (libmagic, −lmagic)
libmd Message Digest (MD4, MD5, etc.) Support Library (libmd, −lmd)
libmemstat Kernel Memory Allocator Statistics Library (libmemstat, −lmemstat)
libmenu Curses Menu Library (libmenu, −lmenu)
libnetgraph Netgraph User Library (libnetgraph, −lnetgraph)
libnetpgp Netpgp signing, verification, encryption and decryption (libnetpgp, −lnetpgp)
libossaudio OSS Audio Emulation Library (libossaudio, −lossaudio)
libpam Pluggable Authentication Module Library (libpam, −lpam)
libpcap Packet Capture Library (libpcap, −lpcap)
libpci PCI Bus Access Library (libpci, −lpci)
libpmc Performance Monitoring Counters Interface Library (libpmc, −lpmc)
libposix POSIX Compatibility Library (libposix, −lposix)
libprop Property Container Object Library (libprop, −lprop)
libpthread POSIX Threads Library (libpthread, −lpthread)
libpuffs puffs Convenience Library (libpuffs, −lpuffs)
librefuse File System in Userspace Convenience Library (librefuse, −lrefuse)
libresolv DNS Resolver Library (libresolv, −lresolv)
librpcsec_gss RPC GSS-API Authentication Library (librpcsec_gss, −lrpcsec_gss)
librpcsvc RPC Service Library (librpcsvc, −lrpcsvc)
librt POSIX Real-time Library (librt, −lrt)
libsdp Bluetooth Service Discovery Protocol User Library (libsdp, −lsdp)
libssp Buffer Overflow Protection Library (libssp, −lssp)
libSystem System Library (libSystem, −lSystem)
libtermcap Termcap Access Library (libtermcap, −ltermcap)
libterminfo Terminal Information Library (libterminfo, −lterminfo)
libthr 1:1 Threading Library (libthr, −lthr)
libufs UFS File System Access Library (libufs, −lufs)
libugidfw File System Firewall Interface Library (libugidfw, −lugidfw)
libulog User Login Record Library (libulog, −lulog)
libusbhid USB Human Interface Devices Library (libusbhid, −lusbhid)
libutil System Utilities Library (libutil, −lutil)
libvgl Video Graphics Library (libvgl, −lvgl)
libx86_64 x86_64 Architecture Library (libx86_64, −lx86_64)
libz Compression Library (libz, −lz)

Site-specific additions might be found in the file mdoc.local; see section “Files” below.

In a section titled “Library”, ‘Lb’ causes a break before and after its arguments.

Literals

The ‘Li’ literal macro may be used for special characters, symbolic constants, and other syntactical items
that should be typed exactly as displayed.

Usage: .Li 〈argument〉 . . .

.Li \en \n

.Li M1 M2 M3 ; M1 M2 M3;

.Li cntrl−D) , cntrl-D),

groff 1.23.0 2 July 2023 13

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Li 1024 ... 1024 ...

The default width is 16n.

Names

The ‘Nm’ macro is used for the document title or page topic. Upon its first call, it has the peculiarity of re-
membering its argument, which should always be the topic of the man page. When subsequently called
without arguments, ‘Nm’ regurgitates this initial name for the sole purpose of making less work for the au-
thor. Use of ‘Nm’ is also appropriate when presenting a command synopsis for the topic of a man page in
section 1, 6, or 8. Its behavior changes when presented with arguments of various forms.

.Nm groff_mdoc groff_mdoc

.Nm groff_mdoc

.Nm \−mdoc −mdoc

.Nm foo)) , foo)),

.Nm : groff_mdoc:

By default, the topic is set in boldface to reflect its prime importance in the discussion. Cross references to
other man page topics should use ‘Xr’; including a second argument for the section number enables them
to be hyperlinked. By default, cross-referenced topics are set in italics to avoid cluttering the page with
boldface.

The default width is 10n.

Options

The .Op macro places option brackets around any remaining arguments on the command line, and places
any trailing punctuation outside the brackets. The macros .Oo and .Oc (which produce an opening and a
closing option bracket, respectively) may be used across one or more lines or to specify the exact position
of the closing parenthesis.

Usage: .Op [〈option〉] . . .

.Op []

.Op Fl k [−k]

.Op Fl k) . [−k]).

.Op Fl k Ar kookfile [−k kookfile]

.Op Fl k Ar kookfile , [−k kookfile],

.Op Ar objfil Op Ar corfil [objfil [corfil]]

.Op Fl c Ar objfil Op Ar corfil , [−c objfil [corfil]],

.Op word1 word2 [word1 word2]

.Li .Op Oo Ao option Ac OcOp [〈option〉] . . .

Here a typical example of the .Oo and .Oc macros:

.Oo

.Op Fl k Ar kilobytes

.Op Fl i Ar interval

.Op Fl c Ar count

.Oc

Produces:

[[−k kilobytes] [−i interval] [−c count]]

The default width values of .Op and .Oo are 14n and 10n, respectively.

Pathnames

The .Pa macro formats file specifications. If called without arguments, ‘~’ (recognized by many shells) is
output, representing the user’s home directory.

Usage: .Pa [〈pathname〉] . . .

groff 1.23.0 2 July 2023 14

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Pa ~

.Pa /usr/share /usr/share

.Pa /tmp/fooXXXXX) . /tmp/fooXXXXX).

The default width is 32n.

Standards

The .St macro replaces standard abbreviations with their formal names.

Usage: .St 〈abbreviation〉 . . .

Av ailable pairs for “Abbreviation/Formal Name” are:

ANSI/ISO C

−ansiC ANSI X3.159-1989 (“ANSI C89”)
−ansiC−89 ANSI X3.159-1989 (“ANSI C89”)
−isoC ISO/IEC 9899:1990 (“ISO C90”)
−isoC−90 ISO/IEC 9899:1990 (“ISO C90”)
−isoC−99 ISO/IEC 9899:1999 (“ISO C99”)
−isoC−2011 ISO/IEC 9899:2011 (“ISO C11”)

POSIX Part 1: System API

−iso9945−1−90 ISO/IEC 9945-1:1990 (“POSIX.1”)
−iso9945−1−96 ISO/IEC 9945-1:1996 (“POSIX.1”)
−p1003.1 IEEE Std 1003.1 (“POSIX.1”)
−p1003.1−88 IEEE Std 1003.1-1988 (“POSIX.1”)
−p1003.1−90 ISO/IEC 9945-1:1990 (“POSIX.1”)
−p1003.1−96 ISO/IEC 9945-1:1996 (“POSIX.1”)
−p1003.1b−93 IEEE Std 1003.1b-1993 (“POSIX.1”)
−p1003.1c−95 IEEE Std 1003.1c-1995 (“POSIX.1”)
−p1003.1g−2000 IEEE Std 1003.1g-2000 (“POSIX.1”)
−p1003.1i−95 IEEE Std 1003.1i-1995 (“POSIX.1”)
−p1003.1−2001 IEEE Std 1003.1-2001 (“POSIX.1”)
−p1003.1−2004 IEEE Std 1003.1-2004 (“POSIX.1”)
−p1003.1−2008 IEEE Std 1003.1-2008 (“POSIX.1”)

POSIX Part 2: Shell and Utilities

−iso9945−2−93 ISO/IEC 9945-2:1993 (“POSIX.2”)
−p1003.2 IEEE Std 1003.2 (“POSIX.2”)
−p1003.2−92 IEEE Std 1003.2-1992 (“POSIX.2”)
−p1003.2a−92 IEEE Std 1003.2a-1992 (“POSIX.2”)

X/Open

−susv1 Version 1 of the Single UNIX Specification (“SUSv1”)
−susv2 Version 2 of the Single UNIX Specification (“SUSv2”)
−susv3 Version 3 of the Single UNIX Specification (“SUSv3”)
−susv4 Version 4 of the Single UNIX Specification (“SUSv4”)
−svid4 System V Interface Definition, Fourth Edition (“SVID4”)
−xbd5 X/Open Base Definitions Issue 5 (“XBD5”)
−xcu5 X/Open Commands and Utilities Issue 5 (“XCU5”)
−xcurses4.2 X/Open Curses Issue 4, Version 2 (“XCURSES4.2”)
−xns5 X/Open Networking Services Issue 5 (“XNS5”)
−xns5.2 X/Open Networking Services Issue 5.2 (“XNS5.2”)
−xpg3 X/Open Portability Guide Issue 3 (“XPG3”)
−xpg4 X/Open Portability Guide Issue 4 (“XPG4”)

groff 1.23.0 2 July 2023 15

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

−xpg4.2 X/Open Portability Guide Issue 4, Version 2 (“XPG4.2”)
−xsh5 X/Open System Interfaces and Headers Issue 5 (“XSH5”)

Miscellaneous

−ieee754 IEEE Std 754-1985
−iso8601 ISO 8601
−iso8802−3 ISO/IEC 8802-3:1989

Variable Types

The .Vt macro may be used whenever a type is referenced. In a section titled “Synopsis”, ‘Vt’ causes a
break (useful for old-style C variable declarations).

Usage: .Vt 〈type〉 . . .

.Vt extern char ∗optarg ; extern char ∗optarg;

.Vt FILE ∗ FILE ∗

Variables

Generic variable reference.

Usage: .Va 〈variable〉 . . .

.Va count count

.Va settimer , settimer,

.Va "int ∗prt") : int ∗prt):

.Va "char s"])) , char s])),

The default width is 12n.

Manual Page Cross References

The .Xr macro expects the first argument to be a manual page name. The optional second argument, if a
string (defining the manual section), is put into parentheses.

Usage: .Xr 〈man page name〉 [〈section〉] . . .

.Xr mdoc mdoc

.Xr mdoc , mdoc,

.Xr mdoc 7 mdoc(7)

.Xr xinit 1x ; xinit(1x);

The default width is 10n.

General text domain

AT&T Macro

Usage: .At [〈version〉] . . .

.At AT&T UNIX

.At v6 . Version 6 AT&T UNIX.

The following values for 〈version〉 are possible:

32v, v1, v2, v3, v4, v5, v6, v7, III, V, V.1, V.2, V.3, V.4

BSD Macro

Usage: .Bx {−alpha | −beta | −devel} . . .
.Bx [〈version〉 [〈release〉]] . . .

.Bx BSD

.Bx 4.3 . 4.3 BSD.

.Bx −devel BSD (currently under development)

〈version〉 will be prepended to the string ‘BSD’. The following values for 〈release〉 are possible:

Reno, reno, Tahoe, tahoe, Lite, lite, Lite2, lite2

groff 1.23.0 2 July 2023 16

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

NetBSD Macro

Usage: .Nx [〈version〉] . . .

.Nx NetBSD

.Nx 1.4 . NetBSD 1.4.

For possible values of 〈version〉 see the description of the .Os command above in section “Title macros”.

FreeBSD Macro

Usage: .Fx [〈version〉] . . .

.Fx FreeBSD

.Fx 2.2 . FreeBSD 2.2.

For possible values of 〈version〉 see the description of the .Os command above in section “Title macros”.

DragonFly Macro

Usage: .Dx [〈version〉] . . .

.Dx DragonFly

.Dx 1.4 . DragonFly 1.4.

For possible values of 〈version〉 see the description of the .Os command above in section “Title macros”.

OpenBSD Macro

Usage: .Ox [〈version〉] . . .

.Ox 1.0 OpenBSD 1.0

BSD/OS Macro

Usage: .Bsx [〈version〉] . . .

.Bsx 1.0 BSD/OS 1.0

Unix Macro

Usage: .Ux ...

.Ux Unix

Emphasis Macro

Te xt may be stressed or emphasized with the .Em macro. The usual font for emphasis is italic.

Usage: .Em 〈argument〉 . . .

.Em does not does not

.Em exceed 1024 . exceed 1024.

.Em vide infra)) , vide infra)),

The default width is 10n.

Font Mode

The .Bf font mode must be ended with the .Ef macro (the latter takes no arguments). Font modes may
be nested within other font modes.

.Bf has the following syntax:

.Bf 〈font mode〉

〈font mode〉 must be one of the following three types:

Em | −emphasis Same as if the .Em macro was used for the entire block of text.
Li | −literal Same as if the .Li macro was used for the entire block of text.
Sy | −symbolic Same as if the .Sy macro was used for the entire block of text.

Both macros are neither callable nor parsed.

Enclosure and Quoting Macros

The concept of enclosure is similar to quoting. The object being to enclose one or more strings between a
pair of characters like quotes or parentheses. The terms quoting and enclosure are used interchangeably

groff 1.23.0 2 July 2023 17

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

throughout this document. Most of the one-line enclosure macros end in small letter ‘q’ to giv e a hint of
quoting, but there are a few irregularities. For each enclosure macro, there is a pair of opening and closing
macros that end with the lowercase letters ‘o’ and ‘c’ respectively.

Quote Open Close Function Result

.Aq .Ao .Ac Angle Bracket Enclosure <string>

.Bq .Bo .Bc Bracket Enclosure [string]

.Brq .Bro .Brc Brace Enclosure {string}

.Dq .Do .Dc Double Quote “string”

.Eq .Eo .Ec Enclose String (in XY) XstringY

.Pq .Po .Pc Parenthesis Enclosure (string)

.Ql Quoted Literal “string” or string

.Qq .Qo .Qc Straight Double Quote "string"

.Sq .So .Sc Single Quote ‘string’

All macros ending with ‘q’ and ‘o’ have a default width value of 12n.

.Eo, .Ec These macros expect the first argument to be the opening and closing strings, respectively.

.Es, .En To work around the nine-argument limit in the original troff program, mdoc supports two other
macros that are now obsolete. .Es uses its first and second parameters as opening and clos-
ing marks which are then used to enclose the arguments of .En. The default width value is
12n for both macros.

.Eq The first and second arguments of this macro are the opening and closing strings respectively,
followed by the arguments to be enclosed.

.Ql The quoted literal macro behaves differently in troff and nroff modes. If formatted with
nroff(1), a quoted literal is always quoted. If formatted with troff, an item is only quoted if the
width of the item is less than three constant-width characters. This is to make short strings
more visible where the font change to literal (constant-width) is less noticeable.

The default width is 16n.

.Pf The prefix macro suppresses the whitespace between its first and second argument:

.Pf (Fa name2 (name2

The default width is 12n.

The .Ns macro (see below) performs the analogous suffix function.

.Ap The .Ap macro inserts an apostrophe and exits any special text modes, continuing in .No
mode.

Examples of quoting:

.Aq 〈〉

.Aq Pa ctype.h) , 〈ctype.h〉),

.Bq []

.Bq Em Greek , French . [Greek, Fr ench].

.Dq “”

.Dq string abc . “string abc”.

.Dq '\[ha][A−Z]' “’^[A-Z]’”

.Ql man mdoc man mdoc

.Qq ""

.Qq string) , "string"),

.Qq string Ns), "string),"

.Sq ‘’

groff 1.23.0 2 July 2023 18

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Sq string ‘string’

.Em or Ap ing or’ing

For a good example of nested enclosure macros, see the .Op option macro. It was created from the same
underlying enclosure macros as those presented in the list above. The .Xo and .Xc extended argument list
macros are discussed below.

Normal text macro

‘No’ formats subsequent argument(s) normally, ending the effect of ‘Em’ and similar. Parsing is not sup-
pressed, so you must prefix words like ‘No’ with ‘\&’ to avoid their interpretation as mdoc macros.

Usage: .No argument . . .

.Em Use caution No here . → Use caution here.

.Em No dogs allowed . → No dogs allowed.

.Em \&No dogs allowed . → No dogs allowed.

The default width is 12n.

No-Space Macro

The .Ns macro suppresses insertion of a space between the current position and its first parameter. For ex-
ample, it is useful for old style argument lists where there is no space between the flag and argument:

Usage: ... 〈argument〉 Ns [〈argument〉] . . .
.Ns 〈argument〉 . . .

.Op Fl I Ns Ar directory [−Idirectory]

Note: The .Ns macro always invokes the .No macro after eliminating the space unless another macro
name follows it. If used as a command (i.e., the second form above in the ‘Usage’ line), .Ns is identical to
.No.

(Sub)section cross references

Use the .Sx macro to cite a (sub)section heading within the given document.

Usage: .Sx 〈section-reference〉 . . .

.Sx Files → “Files”

The default width is 16n.

Symbolics

The symbolic emphasis macro is generally a boldface macro in either the symbolic sense or the traditional
English usage.

Usage: .Sy 〈symbol〉 . . .

.Sy Important Notice → Important Notice

The default width is 6n.

Mathematical Symbols

Use this macro for mathematical symbols and similar things.

Usage: .Ms 〈math symbol〉 . . .

.Ms sigma → sigma

The default width is 6n.

References and Citations

The following macros make a modest attempt to handle references. At best, the macros make it convenient
to manually drop in a subset of refer(1) style references.

.Rs Reference start (does not take arguments). In a section titled “See also”, it causes a break
and begins collection of reference information until the reference end macro is read.

groff 1.23.0 2 July 2023 19

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Re Reference end (does not take arguments). The reference is printed.

.%A Reference author name; one name per invocation.

.%B Book title.

.%C City/place.

.%D Date.

.%I Issuer/publisher name.

.%J Journal name.

.%N Issue number.

.%O Optional information.

.%P Page number.

.%Q Corporate or foreign author.

.%R Report name.

.%T Title of article.

.%U Optional hypertext reference.

.%V Volume.

Macros beginning with ‘%’ are not callable but accept multiple arguments in the usual way. Only the .Tn
macro is handled properly as a parameter; other macros will cause strange output. .%B and .%T can be
used outside of the .Rs/.Re environment.

Example:

.Rs

.%A "Matthew Bar"

.%A "John Foo"

.%T "Implementation Notes on foobar(1)"

.%R "Technical Report ABC−DE−12−345"

.%Q "Drofnats College"

.%C "Nowhere"

.%D "April 1991"

.Re

produces

Matthew Bar and John Foo, Implementation Notes on foobar(1), Technical Report ABC-
DE-12-345, Drofnats College, Nowhere, April 1991.

Trade Names or Acronyms

The trade name macro prints its arguments at a smaller type size. It is intended to imitate a small caps fonts
for fully capitalized acronyms.

Usage: .Tn 〈symbol〉 . . .

.Tn DEC DEC

.Tn ASCII ASCII

The default width is 10n.

Extended Arguments

The .Xo and .Xc macros allow one to extend an argument list on a macro boundary for the .It macro
(see below). Note that .Xo and .Xc are implemented similarly to all other macros opening and closing an
enclosure (without inserting characters, of course). This means that the following is true for those macros
also.

Here is an example of .Xo using the space mode macro to turn spacing off:

.Bd −literal −offset indent

.Sm off

.It Xo Sy I Ar operation

.No \en Ar count No \en

.Xc

groff 1.23.0 2 July 2023 20

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Sm on

.Ed

produces

Ioperation\ncount\n

Another one:

.Bd −literal −offset indent

.Sm off

.It Cm S No / Ar old_pattern Xo

.No / Ar new_pattern

.No / Op Cm g

.Xc

.Sm on

.Ed

produces

S/old_pattern/new_pattern/[g]

Another example of .Xo and enclosure macros: Test the value of a variable.

.Bd −literal −offset indent

.It Xo

.Ic .ifndef

.Oo \&! Oc Ns Ar variable Oo

.Ar operator variable No ...

.Oc Xc

.Ed

produces

.ifndef [!]variable [operator variable . . .]

Page structure domain

Section headings

The following .Sh section heading macros are required in every man page. The remaining section head-
ings are recommended at the discretion of the author writing the manual page. The .Sh macro is parsed
but not generally callable. It can be used as an argument in a call to .Sh only; it then reactivates the de-
fault font for .Sh.

The default width is 8n.

.Sh Name The .Sh Name macro is mandatory. If not specified, headers, footers, and page
layout defaults will not be set and things will be rather unpleasant. The Name

section consists of at least three items. The first is the .Nm name macro naming
the subject of the man page. The second is the name description macro, .Nd,
which separates the subject name from the third item, which is the description.
The description should be the most terse and lucid possible, as the space avail-
able is small.

.Nd first prints ‘−’, then all its arguments.

.Sh Library This section is for section two and three function calls. It should consist of a sin-
gle .Lb macro call; see “Library Names”.

.Sh Synopsis The “Synopsis” section describes the typical usage of the subject of a man page.
The macros required are either .Nm, .Cd, or .Fn (and possibly .Fo, .Fc,
.Fd, and .Ft). The function name macro .Fn is required for manual page sec-
tions 2 and 3; the command and general name macro .Nm is required for sec-
tions 1, 5, 6, 7, and 8. Section 4 manuals require a .Nm, .Fd or a .Cd

groff 1.23.0 2 July 2023 21

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

configuration device usage macro. Several other macros may be necessary to
produce the synopsis line as shown below:

cat [−benstuv] [−] file . . .

The following macros were used:

.Nm cat

.Op Fl benstuv

.Op Fl

.Ar file No ...

.Sh Description In most cases the first text in the “Description” section is a brief paragraph on
the command, function or file, followed by a lexical list of options and respective
explanations. To create such a list, the .Bl (begin list), .It (list item) and .El
(end list) macros are used (see “Lists and Columns” below).

.Sh Implementation notes
Implementation specific information should be placed here.

.Sh Return values Sections 2, 3 and 9 function return values should go here. The .Rv macro may
be used to generate text for use in the “Return values” section for most section 2
and 3 library functions; see “Return Values”.

The following .Sh section headings are part of the preferred manual page layout and must be used appro-
priately to maintain consistency. They are listed in the order in which they would be used.

.Sh Environment The Environment section should reveal any related environment variables and
clues to their behavior and/or usage.

.Sh Files Files which are used or created by the man page subject should be listed via the
.Pa macro in the “Files” section.

.Sh Examples There are several ways to create examples. See subsection “Examples and
Displays” below for details.

.Sh Diagnostics Diagnostic messages from a command should be placed in this section. The
.Ex macro may be used to generate text for use in the “Diagnostics” section for
most section 1, 6 and 8 commands; see “Exit Status”.

.Sh Compatibility Known compatibility issues (e.g. deprecated options or parameters) should be
listed here.

.Sh Errors Specific error handling, especially from library functions (man page sections 2,
3, and 9) should go here. The .Er macro is used to specify an error (errno).

.Sh See also References to other material on the man page topic and cross references to other
relevant man pages should be placed in the “See also” section. Cross references
are specified using the .Xr macro. Currently refer(1) style references are not
accommodated.

It is recommended that the cross references be sorted by section number, then al-
phabetically by name within each section, then separated by commas. Example:

ls(1), ps(1), group(5), passwd(5)

.Sh Standards If the command, library function, or file adheres to a specific implementation
such as IEEE Std 1003.2 (“POSIX.2”) or ANSI X3.159-1989 (“ANSI C89”) this
should be noted here. If the command does not adhere to any standard, its his-
tory should be noted in the History section.

.Sh History Any command which does not adhere to any specific standards should be out-
lined historically in this section.

groff 1.23.0 2 July 2023 22

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Sh Authors Credits should be placed here. Use the .An macro for names and the .Aq
macro for email addresses within optional contact information. Explicitly indi-
cate whether the person authored the initial manual page or the software or what-
ev er the person is being credited for.

.Sh Bugs Blatant problems with the topic go here.

User-specified .Sh sections may be added; for example, this section was set with:

.Sh "Page structure domain"

Subsection headings

Subsection headings have exactly the same syntax as section headings: .Ss is parsed but not generally
callable. It can be used as an argument in a call to .Ss only; it then reactivates the default font for .Ss.

The default width is 8n.

Paragraphs and Line Spacing

.Pp The .Pp paragraph command may be used to specify a line space where necessary. The macro is not
necessary after a .Sh or .Ss macro or before a .Bl or .Bd macro (which both assert a vertical dis-
tance unless the −compact flag is given).

The macro is neither callable nor parsed and takes no arguments; an alternative name is .Lp.

Keeps

The only keep that is implemented at this time is for words. The macros are .Bk (begin keep) and .Ek
(end keep). The only option that .Bk currently accepts is −words (also the default); this prevents breaks
in the middle of options. In the example for make command-line arguments (see “What’s in a Name”), the
keep prevents nroff from placing the flag and the argument on separate lines.

Neither macro is callable or parsed.

More work needs to be done on the keep macros; specifically, a −line option should be added.

Examples and Displays

There are seven types of displays.

.D1 (This is D-one.) Display one line of indented text. This macro is parsed but not callable.

−ldghfstru

The above was produced by: .D1 Fl ldghfstru.

.Dl (This is D-ell.) Display one line of indented literal text. The .Dl example macro has been used
throughout this file. It allows the indentation (display) of one line of text. Its default font is set to
constant width (literal). .Dl is parsed but not callable.

% ls −ldg /usr/local/bin

The above was produced by: .Dl % ls \−ldg /usr/local/bin.

.Bd Begin display. The .Bd display must be ended with the .Ed macro. It has the following syntax:

.Bd {−literal | −filled | −unfilled | −ragged | −centered} [−offset 〈string〉] [−file 〈file name〉]
[−compact]

−ragged Fill, but do not adjust the right margin (only left-justify).
−centered Center lines between the current left and right margin. Note that each sin-

gle line is centered.
−unfilled Do not fill; break lines where their input lines are broken. This can pro-

duce overlong lines without warning messages.
−filled Display a filled block. The block of text is formatted (i.e., the text is justi-

fied on both the left and right side).

groff 1.23.0 2 July 2023 23

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

−literal Display block with literal font (usually fixed-width). Useful for source
code or simple tabbed or spaced text.

−file 〈file name〉 The file whose name follows the −file flag is read and displayed before
any data enclosed with .Bd and .Ed, using the selected display type. Any
troff/mdoc commands in the file will be processed.

−offset 〈string〉 If −offset is specified with one of the following strings, the string is in-
terpreted to indicate the level of indentation for the forthcoming block of
text:

left Align block on the current left margin; this is the default
mode of .Bd.

center Supposedly center the block. At this time unfortunately,
the block merely gets left aligned about an imaginary cen-
ter margin.

indent Indent by one default indent value or tab. The default in-
dent value is also used for the .D1 and .Dl macros, so
one is guaranteed the two types of displays will line up.
The indentation value is normally set to 6n or about two
thirds of an inch (six constant width characters).

indent−two Indent two times the default indent value.
right This left aligns the block about two inches from the right

side of the page. This macro needs work and perhaps may
never do the right thing within troff.

If 〈string〉 is a valid numeric expression instead (with a scaling indicator

other than ‘u’), use that value for indentation. The most useful scaling in-
dicators are ‘m’ and ‘n’, specifying the so-called Em and En square. This
is approximately the width of the letters ‘m’ and ‘n’ respectively of the cur-
rent font (for nroff output, both scaling indicators give the same values). If
〈string〉 isn’t a numeric expression, it is tested whether it is an mdoc macro
name, and the default offset value associated with this macro is used. Fi-
nally, if all tests fail, the width of 〈string〉 (typeset with a fixed-width font)
is taken as the offset.

−compact Suppress insertion of vertical space before begin of display.

.Ed End display (takes no arguments).

Lists and Columns

There are several types of lists which may be initiated with the .Bl begin-list macro. Items within the list
are specified with the .It item macro, and each list must end with the .El macro. Lists may be nested
within themselves and within displays. The use of columns inside of lists or lists inside of columns is
untested.

In addition, several list attributes may be specified such as the width of a tag, the list offset, and compact-
ness (blank lines between items allowed or disallowed). Most of this document has been formatted with a
tag style list (−tag).

It has the following syntax forms:

.Bl {−hang | −ohang | −tag | −diag | −inset} [−width 〈string〉] [−offset 〈string〉] [−compact]

.Bl −column [−offset 〈string〉] 〈string1〉 〈string2〉 . . .

.Bl {−item | −enum [−nested] | −bullet | −hyphen | −dash} [−offset 〈string〉] [−compact]

And now a detailed description of the list types.

−bullet A bullet list.

.Bl −bullet −offset indent −compact

.It
Bullet one goes here.

groff 1.23.0 2 July 2023 24

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.It
Bullet two here.
.El

Produces:

• Bullet one goes here.
• Bullet two here.

−dash (or −hyphen)
A dash list.

.Bl −dash −offset indent −compact

.It
Dash one goes here.
.It
Dash two here.
.El

Produces:

− Dash one goes here.
− Dash two here.

−enum An enumerated list.

.Bl −enum −offset indent −compact

.It
Item one goes here.
.It
And item two here.
.El

The result:

1. Item one goes here.
2. And item two here.

If you want to nest enumerated lists, use the −nested flag (starting with the second-level
list):

.Bl −enum −offset indent −compact

.It
Item one goes here
.Bl −enum −nested −compact
.It
Item two goes here.
.It
And item three here.
.El
.It
And item four here.
.El

Result:

1. Item one goes here.
1.1. Item two goes here.
1.2. And item three here.

2. And item four here.

groff 1.23.0 2 July 2023 25

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

−item A list of type −item without list markers.

.Bl −item −offset indent

.It
Item one goes here.
Item one goes here.
Item one goes here.
.It
Item two here.
Item two here.
Item two here.
.El

Produces:

Item one goes here. Item one goes here. Item one goes here.

Item two here. Item two here. Item two here.

−tag A list with tags. Use −width to specify the tag width.

SL sleep time of the process (seconds blocked)
PA GEIN

number of disk I/O operations resulting from references by the process to pages
not loaded in core.

UID numerical user-id of process owner
PPID numerical id of parent of process priority (non-positive when in non-interrupt-

ible wait)

The raw text:

.Bl −tag −width "PPID" −compact −offset indent

.It SL
sleep time of the process (seconds blocked)
.It PAGEIN
number of disk I/O operations resulting from references
by the process to pages not loaded in core.
.It UID
numerical user−id of process owner
.It PPID
numerical id of parent of process priority
(non−positive when in non−interruptible wait)
.El

−diag Diag lists create section four diagnostic lists and are similar to inset lists except callable
macros are ignored. The −width flag is not meaningful in this context.

Example:

.Bl −diag

.It You can’t use Sy here.
The message says all.
.El

produces

You can’t use Sy here. The message says all.

−hang A list with hanging tags.

Hanged labels appear similar to tagged lists when the label is smaller than the label
width.

groff 1.23.0 2 July 2023 26

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Longer hanged list labels blend into the paragraph unlike tagged paragraph labels.

And the unformatted text which created it:

.Bl −hang −offset indent

.It Em Hanged
labels appear similar to tagged lists when the
label is smaller than the label width.
.It Em Longer hanged list labels
blend into the paragraph unlike
tagged paragraph labels.
.El

−ohang Lists with overhanging tags do not use indentation for the items; tags are written to a separate
line.

SL

sleep time of the process (seconds blocked)

PA GEIN

number of disk I/O operations resulting from references by the process to pages not
loaded in core.

UID

numerical user-id of process owner

PPID

numerical id of parent of process priority (non-positive when in non-interruptible wait)

The raw text:

.Bl −ohang −offset indent

.It Sy SL
sleep time of the process (seconds blocked)
.It Sy PAGEIN
number of disk I/O operations resulting from references
by the process to pages not loaded in core.
.It Sy UID
numerical user−id of process owner
.It Sy PPID
numerical id of parent of process priority
(non−positive when in non−interruptible wait)
.El

−inset Here is an example of inset labels:

Ta g The tagged list (also called a tagged paragraph) is the most common type of list
used in the Berkeley manuals. Use a −width attribute as described below.

Diag Diag lists create section four diagnostic lists and are similar to inset lists except
callable macros are ignored.

Hang Hanged labels are a matter of taste.

Ohang Overhanging labels are nice when space is constrained.

Inset Inset labels are useful for controlling blocks of paragraphs and are valuable for
converting mdoc manuals to other formats.

Here is the source text which produced the above example:

.Bl −inset −offset indent

.It Em Tag
The tagged list (also called a tagged paragraph)

groff 1.23.0 2 July 2023 27

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

is the most common type of list used in the
Berkeley manuals.
.It Em Diag
Diag lists create section four diagnostic lists
and are similar to inset lists except callable
macros are ignored.
.It Em Hang
Hanged labels are a matter of taste.
.It Em Ohang
Overhanging labels are nice when space is constrained.
.It Em Inset
Inset labels are useful for controlling blocks of
paragraphs and are valuable for converting
.Xr mdoc
manuals to other formats.
.El

−column This list type generates multiple columns. The number of columns and the width of each col-
umn is determined by the arguments to the −column list, 〈string1〉, 〈string2〉, etc. If
〈stringN〉 starts with a ‘.’ (dot) immediately followed by a valid mdoc macro name, inter-
pret 〈stringN〉 and use the width of the result. Otherwise, the width of 〈stringN〉 (typeset
with a fixed-width font) is taken as the Nth column width.

Each .It argument is parsed to make a row, each column within the row is a separate argu-
ment separated by a tab or the .Ta macro.

The table:

String Nroff Troff

<= <= ≤
>= >= ≥

was produced by:

.Bl −column −offset indent ".Sy String" ".Sy Nroff" ".Sy Troff"

.It Sy String Ta Sy Nroff Ta Sy Troff

.It Li <= Ta <= Ta \∗(<=

.It Li >= Ta >= Ta \∗(>=

.El

Don’t abuse this list type! For more complicated cases it might be far better and easier to use
tbl(1), the table preprocessor.

Other keywords:

−width 〈string〉 If 〈string〉 starts with a ‘.’ (dot) immediately followed by a valid mdoc macro
name, interpret 〈string〉 and use the width of the result. Almost all lists in this
document use this option.

Example:

.Bl −tag −width ".Fl test Ao Ar string Ac"

.It Fl test Ao Ar string Ac
This is a longer sentence to show how the
.Fl width
flag works in combination with a tag list.
.El

gives:

groff 1.23.0 2 July 2023 28

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

−test 〈string〉 This is a longer sentence to show how the −width flag
works in combination with a tag list.

(Note that the current state of mdoc is saved before 〈string〉 is interpreted; after-
wards, all variables are restored again. However, boxes (used for enclosures) can’t
be saved in GNU troff(1); as a consequence, arguments must always be balanced

to avoid nasty errors. For example, do not write .Ao Ar string but .Ao Ar
string Xc instead if you really need only an opening angle bracket.)

Otherwise, if 〈string〉 is a valid numeric expression (with a scaling indicator

other than ‘u’), use that value for indentation. The most useful scaling indicators
are ‘m’ and ‘n’, specifying the so-called Em and En square. This is approximately
the width of the letters ‘m’ and ‘n’ respectively of the current font (for nroff out-
put, both scaling indicators give the same values). If 〈string〉 isn’t a numeric
expression, it is tested whether it is an mdoc macro name, and the default width
value associated with this macro is used. Finally, if all tests fail, the width of
〈string〉 (typeset with a fixed-width font) is taken as the width.

If a width is not specified for the tag list type, ‘6n’ is used.

−offset 〈string〉 If 〈string〉 is indent, a default indent value (normally set to 6n, similar to the
value used in .Dl or .Bd) is used. If 〈string〉 is a valid numeric expression in-
stead (with a scaling indicator other than ‘u’), use that value for indentation. The
most useful scaling indicators are ‘m’ and ‘n’, specifying the so-called Em and En

square. This is approximately the width of the letters ‘m’ and ‘n’ respectively of
the current font (for nroff output, both scaling indicators give the same values). If
〈string〉 isn’t a numeric expression, it is tested whether it is an mdoc macro
name, and the default offset value associated with this macro is used. Finally, if
all tests fail, the width of 〈string〉 (typeset with a fixed-width font) is taken as
the offset.

−compact Suppress insertion of vertical space before the list and between list items.

Miscellaneous macros

A double handful of macros fit only uncomfortably into one of the above sections. Of these, we couldn’t
find attested examples for ‘Me’ or ‘Ot’. They are documented here for completeness—if you know their
proper usage, please send a mail to groff@gnu.org and include a specimen with its provenance.

.Bt formats boilerplate text.

.Bt → is currently in beta test.

It is neither callable nor parsed and takes no arguments. Its default width is 6n.

.Fr is an obsolete means of specifying a function return value.

Usage: .Fr return-value . . .

‘Fr’ allows a break right before the return value (usually a single digit) which is bad typographical
behaviour. Instead, set the return value with the rest of the code, using ‘\~’ to tie the return value to
the previous word.

Its default width is 12n.

.Hf Inlines the contents of a (header) file into the document.

Usage: .Hf file

It first prints File: followed by the file name, then the contents of file. It is neither callable nor
parsed.

.Lk Embed hyperlink.

groff 1.23.0 2 July 2023 29

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Usage: .Lk uri [link-text]

Its default width is 6n.

.Me Usage unknown. The mdoc sources describe it as a macro for “menu entries”.

Its default width is 6n.

.Mt Embed email address.

Usage: .Mt email-address

Its default width is 6n.

.Ot Usage unknown. The mdoc sources describe it as “old function type (fortran)”.

.Sm Manipulate or toggle argument-spacing mode.

Usage: .Sm [on | off] . . .

If argument-spacing mode is off, no spaces between macro arguments are inserted. If called without a
parameter (or if the next parameter is neither ‘on’ nor off), ‘Sm’ toggles argument-spacing mode.

Its default width is 8n.

.Ud formats boilerplate text.

.Ud → currently under development.

It is neither callable nor parsed and takes no arguments. Its default width is 8n.

Predefined strings

The following strings are predefined for compatibility with legacy mdoc documents. Contemporary ones
should use the alternatives shown in the “Prefer” column below. See groff_char(7) for a full discussion of
these special character escape sequences.

String 7-bit 8-bit UCS Prefer Meaning

\∗(<= <= <= ≤ \(<= less than or equal to
\∗(>= >= >= ≥ \(>= greater than or equal to
\∗(Rq " " ” \(rq right double quote
\∗(Lq " " “ \(lq left double quote
\∗(ua ^ ^ ↑ \(ua vertical arrow up
\∗(aa ' ´ ´ \(aa acute accent
\∗(ga ` ` ` \(ga grave accent
\∗(q " " " \(dq neutral double quote
\∗(Pi pi pi π \(∗p lowercase pi
\∗(Ne != != ≠ \(!= not equals
\∗(Le <= <= ≤ \(<= less than or equal to
\∗(Ge >= >= ≥ \(>= greater than or equal to
\∗(Lt < < < < less than
\∗(Gt > > > > greater than
\∗(Pm +− ± ± \(+− plus or minus
\∗(If infinity infinity ∞ \(if infinity
\∗(Am & & & & ampersand
\∗(Na NaN NaN NaN NaN not a number
\∗(Ba | | | | bar

Some column headings are shorthand for standardized character encodings; “7-bit” for ISO 646:1991 IRV
(US-ASCII), “8-bit” for ISO 8859-1 (Latin-1) and IBM code page 1047, and “UCS” for ISO 10646 (Uni-
code character set). Historically, mdoc configured the string definitions to fit the capabilities expected of
the output device. Old typesetters lacked directional double quotes, producing repeated directional single
quotes ‘‘like this’’; early versions of mdoc in fact defined the ‘Lq’ and ‘Rq’ strings this way. Now adays,
output drivers take on the responsibility of glyph substitution, as they possess relevant knowledge of their
available repertoires.

groff 1.23.0 2 July 2023 30

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Diagnostics

The debugging macro .Db offered by previous versions of mdoc is unavailable in GNU troff(1) since the
latter provides better facilities to check parameters; additionally, groff mdoc implements many error and
warning messages, making the package more robust and more verbose.

The remaining debugging macro is .Rd, which dumps the package’s global register and string contents to
the standard error stream. A normal user will never need it.

Options

The following groff options set registers (with −r) and strings (with −d) recognized and used by the mdoc

macro package. To ensure rendering consistent with output device capabilities and reader preferences, man
pages should never manipulate them.

Setting string ‘AD’ configures the adjustment mode for most formatted text. Typical values are ‘b’ for ad-
justment to both margins (the default), or ‘l’ for left alignment (ragged right margin). Any valid argument
to groff’s ‘ad’ request may be used. See groff(7) for less-common choices.

groff −Tutf8 −dAD=l −mdoc groff_mdoc.7 | less −R

Setting register ‘C’ to 1 numbers output pages consecutively, rather than resetting the page number to 1 (or
the value of register ‘P’) with each new mdoc document.

By default, the package inhibits page breaks, headers, and footers in the midst of the document text if it is
being displayed with a terminal device such as ‘latin1’ or ‘utf8’, to enable more efficient viewing of the
page. This behavior can be changed to format the page as if for 66-line Teletype output by setting the con-
tinuous rendering register ‘cR’ to zero while calling groff(1).

groff −Tlatin1 −rcR=0 −mdoc foo.man > foo.txt
On HTML devices, it cannot be disabled.

Section headings (defined with .Sh) and page titles in headers (defined with .Dt) can be presented in full
capitals by setting the registers ‘CS’ and ‘CT’, respectively, to 1. These transformations are off by default
because they discard case distinction information.

Setting register ‘D’ to 1 enables double-sided page layout, which is only distinct when not continuously
rendering. It places the page number at the bottom right on odd-numbered (recto) pages, and at the bottom
left on even-numbered (verso) pages, swapping places with the arguments to .Os.

groff −Tps −rD1 −mdoc foo.man > foo.ps

The value of the ‘FT’ register determines the footer’s distance from the page bottom; this amount is always
negative and should specify a scaling unit. At one half-inch above this location, the page text is broken be-
fore writing the footer. It is ignored if continuous rendering is enabled. The default is −0.5i.

The ‘HF’ string sets the font used for section and subsection headings; the default is ‘B’ (bold style of the
default family). Any valid argument to groff’s ‘ft’ request may be used.

Normally, automatic hyphenation is enabled using a mode appropriate to the groff locale; see section “Lo-
calization“ of groff(7). It can be disabled by setting the ‘HY’ register to zero.

groff −Tutf8 −rHY=0 −mdoc foo.man | less −R

The paragraph and subsection heading indentation amounts can be changed by setting the registers ‘IN’
and ‘SN’.

groff −Tutf8 −rIN=5n −rSN=2n −mdoc foo.man | less −R
The default paragraph indentation is 7.2n on typesetters and 7n on terminals. The default subsection head-
ing indentation amount is 3n; section headings are set with an indentation of zero.

The line and title lengths can be changed by setting the registers ‘LL’ and ‘LT’, respectively:
groff −Tutf8 −rLL=100n −rLT=100n −mdoc foo.man | less −R

If not set, both registers default to 78n for terminal devices and 6.5i otherwise.

Setting the ‘P’ register starts enumeration of pages at its value. The default is 1.

To change the document font size to 11p or 12p, set register ‘S’ accordingly:
groff −Tdvi −rS11 −mdoc foo.man > foo.dvi

Register ‘S’ is ignored when formatting for terminal devices.

groff 1.23.0 2 July 2023 31

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Setting the ‘X’ register to a page number p numbers its successors as pa, pb, pc, and so forth. The register
tracking the suffixed page letter uses format ‘a’ (see the ‘af’ request in groff(7)).

Files

/usr/local/share/groff/1.23.0/tmac/andoc.tmac

This brief groff program detects whether the man or mdoc macro package is being used by a docu-
ment and loads the correct macro definitions, taking advantage of the fact that pages using them
must call TH or Dd, respectively, before any other macros. A user typing, for example,

groff −mandoc page.1
need not know which package the file page.1 uses. Multiple man pages, in either format, can be
handled; andoc.tmac reloads each macro package as necessary.

/usr/local/share/groff/1.23.0/tmac/doc.tmac

implements the bulk of the groff mdoc package and loads further components as needed from the
mdoc subdirectory.

/usr/local/share/groff/1.23.0/tmac/mdoc.tmac

is a wrapper that loads doc.tmac.

/usr/local/share/groff/1.23.0/tmac/mdoc/doc−common

defines macros, registers, and strings concerned with the production of formatted output. It in-
cludes strings of the form doc−volume−ds−X and doc−volume−as−X for manual section ti-
tles and architecture identifiers, respectively, where X is an argument recognized by .Dt.

/usr/local/share/groff/1.23.0/tmac/mdoc/doc−nroff

defines parameters appropriate for rendering to terminal devices.

/usr/local/share/groff/1.23.0/tmac/mdoc/doc−ditroff

defines parameters appropriate for rendering to typesetter devices.

/usr/local/share/groff/1.23.0/tmac/mdoc/doc−syms

defines many strings and macros that interpolate formatted text, such as names of operating system
releases, ∗BSD libraries, and standards documents. The string names are of the form
doc−str−O−V, doc−str−St−−S−I (observe the double dashes), or doc−str−Lb−L, where
O is one of the operating system macros from section “General text domain” above, V is an encod-
ing of an operating system release (sometimes omitted along with the ‘−’ preceding it), S an iden-
tifier for a standards body or committee, I one for an issue of a standard promulgated by S, and L
a keyword identifying a ∗BSD library.

/usr/local/share/groff/site−tmac/mdoc.local

This file houses local additions and customizations to the package. It can be empty.

See also

The mandoc: https://mandoc.bsd.lv/ project maintains an independent implementation of the mdoc lan-
guage and a renderer that directly parses its markup as well as that of man.

groff(1), man(1), troff(1), groff_man(7), mdoc(7)

Bugs

Section 3f has not been added to the header routines.

.Fn needs to have a check to prevent splitting up the line if its length is too short. Occasionally it separates
the last parenthesis, and sometimes looks ridiculous if output lines are being filled.

The list and display macros do not do any keeps and certainly should be able to.

As of groff 1.23, ‘Tn’ no longer changes the type size; this functionality may return in the next release.

groff 1.23.0 2 July 2023 32

