
groff_out(5) File Formats Manual groff_out(5)

Name
groff_out − GNU roff intermediate output format

Description
The fundamental operation of the troff (1) formatter is the translation of the groff (7) input language into a

series of instructions concerned primarily with placing glyphs or geometric objects at specific positions on

a rectangular page. In the following discussion, the term command refers to this intermediate output lan-

guage, never to the groff (7) language intended for use by document authors. Intermediate output com-

mands comprise several categories: glyph output; font, color, and text size selection; motion of the printing

position; page advancement; drawing of geometric primitives; and device control commands, a catch-all for

other operations. The last includes directives to start and stop output, identify the intended output device,

and embed URL hyperlinks in supported output formats.

Because the front-end command groff (1) is a wrapper that normally runs the troff formatter to generate in-

termediate output and an output driver (“postprocessor”) to consume it, users normally do not encounter

this language. The groff program’s −Z option inhibits postprocessing such that this intermediate output is

sent to the standard output stream as when troff is run manually.

groff ’s intermediate output facilitates the development of output drivers and other postprocessors by offer-

ing a common programming interface. It is an extension of the page description language developed by

Brian Kernighan for AT&T device-independent troff circa 1980. Where a distinction is necessary, we will

say “troff output” to describe the output of GNU troff , and “intermediate output” to denote the language

accepted by the parser implemented in groff ’s internal C++ library used by most of its output drivers.

Language concepts
During the run of troff , the roff input is cracked down to the information on what has to be printed at what

position on the intended device. So the language of the intermediate output format can be quite small. Its

only elements are commands with or without arguments. In this document, the term “command” always

refers to the intermediate output language, never to the roff language used for document formatting. There

are commands for positioning and text writing, for drawing, and for device controlling.

Separation

Classical troff output had strange requirements on whitespace. The groff output parser, howev er, is smart

about whitespace by making it maximally optional. The whitespace characters, i.e., the tab, space, and

newline characters, always have a syntactical meaning. They are never printable because spacing within

the output is always done by positioning commands.

Any sequence of space or tab characters is treated as a single syntactical space. It separates commands

and arguments, but is only required when there would occur a clashing between the command code and the

arguments without the space. Most often, this happens when variable length command names, arguments,

argument lists, or command clusters meet. Commands and arguments with a known, fixed length need not

be separated by syntactical space.

A line break is a syntactical element, too. Every command argument can be followed by whitespace, a

comment, or a newline character. Thus a syntactical line break is defined to consist of optional syntactical

space that is optionally followed by a comment, and a newline character.

The normal commands, those for positioning and text, consist of a single letter taking a fixed number of ar-

guments. For historical reasons, the parser allows stacking of such commands on the same line, but fortu-

nately, in groff intermediate output, every command with at least one argument is followed by a line break,

thus providing excellent readability.

The other commands — those for drawing and device controlling — have a more complicated structure;

some recognize long command names, and some take a variable number of arguments. So all D and x com-

mands were designed to request a syntactical line break after their last argument. Only one command,

‘x X’ has an argument that can stretch over sev eral lines, all other commands must have all of their argu-

ments on the same line as the command, i.e., the arguments may not be split by a line break.

Lines containing only spaces and/or a comment are treated as empty and ignored.

groff 1.23.0 2 July 2023 1

groff_out(5) File Formats Manual groff_out(5)

Argument units

Some commands accept integer arguments that represent measurements, but the scaling units of the format-

ter’s language are never used. Most commands assume a scaling unit of “u” (basic units), and others

use “z” (scaled points); These are defined by the parameters specified in the device’s DESC file; see

groff_font(5) and, for more on scaling units, groff (7) and Groff: The GNU Implementation of troff , the

groff Te xinfo manual. Color-related commands use dimensionless integers.

Note that single characters can have the eighth bit set, as can the names of fonts and special characters (this

is, glyphs). The names of glyphs and fonts can be of arbitrary length. A glyph that is to be printed will al-

ways be in the current font.

A string argument is always terminated by the next whitespace character (space, tab, or newline); an em-

bedded # character is regarded as part of the argument, not as the beginning of a comment command. An

integer argument is already terminated by the next non-digit character, which then is regarded as the first

character of the next argument or command.

Document parts

A correct intermediate output document consists of two parts, the prologue and the body.

The task of the prologue is to set the general device parameters using three exactly specified commands.

The groff prologue is guaranteed to consist of the following three lines (in that order):

x T device

x res n h v

x init

with the arguments set as outlined in subsection “Device Control Commands” below. Howev er, the parser

for the intermediate output format is able to swallow additional whitespace and comments as well.

The body is the main section for processing the document data. Syntactically, it is a sequence of any com-

mands different from the ones used in the prologue. Processing is terminated as soon as the first x stop

command is encountered; the last line of any groff intermediate output always contains such a command.

Semantically, the body is page oriented. A new page is started by a p command. Positioning, writing, and

drawing commands are always done within the current page, so they cannot occur before the first p com-

mand. Absolute positioning (by the H and V commands) is done relative to the current page, all other posi-

tioning is done relative to the current location within this page.

Command reference
This section describes all intermediate output commands, the classical commands as well as the groff ex-

tensions.

Comment command

#anything〈line-break〉
A comment. Ignore any characters from the # character up to the next newline. Each comment

can be preceded by arbitrary syntactical space; every command can be terminated by a comment.

Simple commands

The commands in this subsection have a command code consisting of a single character, taking a fixed

number of arguments. Most of them are commands for positioning and text writing. These commands are

smart about whitespace. Optionally, syntactical space can be inserted before, after, and between the com-

mand letter and its arguments. All of these commands are stackable, i.e., they can be preceded by other

simple commands or followed by arbitrary other commands on the same line. A separating syntactical

space is necessary only when two integer arguments would clash or if the preceding argument ends with a

string argument.

C id 〈white-space〉
Typeset the glyph of the special character id . Trailing syntactical space is necessary to allow spe-

cial character names of arbitrary length. The drawing position is not advanced.

groff 1.23.0 2 July 2023 2

groff_out(5) File Formats Manual groff_out(5)

c c Typeset the glyph of the ordinary character character c. The drawing position is not advanced.

f n Select the font mounted at position n. n cannot be negative.

H n Horizontally move the drawing position to n basic units from the left edge of the page. n cannot

be negative.

h n Move the drawing position right n basic units. AT&T troff allowed negative n; GNU troff does

not produce such values, but groff ’s output driver library handles them.

m scheme [component . . .]

Select the stroke color using the components in the color space scheme. Each component is an in-

teger between 0 and 65536. The quantity of components and their meanings vary with each

scheme. This command is a groff extension.

mc cyan magenta yellow

Use the CMY color scheme with components cyan, magenta, and yellow.

md Use the default color (no components; black in most cases).

mg gray

Use a grayscale color scheme with a component ranging between 0 (black) and 65536

(white).

mk cyan magenta yellow black

Use the CMYK color scheme with components cyan, magenta, yellow, and black.

mr red green blue

Use the RGB color scheme with components red, green, and blue.

N n Typeset the glyph with index n in the current font. n is normally a non-negative integer. The

drawing position is not advanced. The html and xhtml devices use this command with negative n

to produce unbreakable space; the absolute value of n is taken and interpreted in basic units.

n b a Indicate a break. No action is performed; the command is present to make the output more easily

parsed. The integers b and a describe the vertical space amounts before and after the break, re-

spectively. GNU troff issues this command but groff ’s output driver library ignores it. See v and

V.

p n Begin a new page, setting its number to n. Each page is independent, even from those using the

same number. The vertical drawing position is set to 0. All positioning, writing, and drawing

commands are interpreted in the context of a page, so a p command must precede them.

s n Set type size to n scaled points (unit z in GNU troff). AT&T troff used unscaled points (p) in-

stead; see section “Compatibility” below.

t xyz . . .〈white-space〉
t xyz . . . dummy-arg〈white-space〉

Typeset word xyz; that is, set a sequence of ordinary glyphs named x, y, z, . . . , terminated by a

space or newline; an optional second integer argument is ignored (this allows the formatter to gen-

erate an even number of arguments). Each glyph is set at the current drawing position, and the po-

sition is then advanced horizontally by the glyph’s width. A glyph’s width is read from its metrics

in the font description file, scaled to the current type size, and rounded to a multiple of the hori-

zontal motion quantum. Use the C command to emplace glyphs of special characters. The t com-

mand is a groff extension and is output only for devices whose DESC file contains the tcommand

directive; see groff_font(5).

u n xyz . . .

u xyz . . . dummy-arg〈white-space〉
Typeset word xyz with track kerning. As t, but after placing each glyph, the drawing position is

further advanced horizontally by n basic units. The u command is a groff extension and is output

only for devices whose DESC file contains the tcommand directive; see groff_font(5).

groff 1.23.0 2 July 2023 3

groff_out(5) File Formats Manual groff_out(5)

V n Vertically move the drawing position to n basic units from the top edge of the page. n cannot be

negative.

v n Move the drawing position down n basic units. AT&T troff allowed negative n; GNU troff does

not produce such values, but groff ’s output driver library handles them.

w Indicate an inter-word space. No action is performed; the command is present to make the output

more easily parsed. Only adjustable, breakable inter-word spaces are thus described; those result-

ing from \~ or horizontal motion escape sequences are not. GNU troff issues this command but

groff ’s output driver library ignores it. See h and H.

Graphics commands

Each graphics or drawing command in the intermediate output starts with the letter D followed by one or

two characters that specify a subcommand; this is followed by a fixed or variable number of integer argu-

ments that are separated by a single space character. A D command may not be followed by another com-

mand on the same line (apart from a comment), so each D command is terminated by a syntactical line

break.

troff output follows the classical spacing rules (no space between command and subcommand, all argu-

ments are preceded by a single space character), but the parser allows optional space between the command

letters and makes the space before the first argument optional. As usual, each space can be any sequence of

tab and space characters.

Some graphics commands can take a variable number of arguments. In this case, they are integers repre-

senting a size measured in basic units u. The h arguments stand for horizontal distances where positive

means right, negative left. The v arguments stand for vertical distances where positive means down, nega-

tive up. All these distances are offsets relative to the current location.

Unless indicated otherwise, each graphics command directly corresponds to a similar groff \D escape se-

quence; see groff (7).

Unknown D commands are assumed to be device-specific. Its arguments are parsed as strings; the whole

information is then sent to the postprocessor.

In the following command reference, the syntax element 〈line-break〉 means a syntactical line break as de-

fined in subsection “Separation” above.

D~ h
1

v
1

h
2

v
2

. . . h
n

v
n
〈line-break〉

Draw B-spline from current position to offset (h
1
, v

1
), then to offset (h

2
, v

2
) if giv en, etc., up to

(h
n
, v

n
). This command takes a variable number of argument pairs; the current position is moved

to the terminal point of the drawn curve.

Da h
1

v
1

h
2

v
2
〈line-break〉

Draw arc from current position to (h
1
, v

1
) + (h

2
, v

2
) with center at (h

1
, v

1
); then move the current

position to the final point of the arc.

DC d 〈line-break〉
DC d dummy-arg 〈line-break〉

Draw a solid circle using the current fill color with diameter d (integer in basic units u) with left-

most point at the current position; then move the current position to the rightmost point of the cir-

cle. An optional second integer argument is ignored (this allows the formatter to generate an even

number of arguments). This command is a groff extension.

Dc d 〈line-break〉
Draw circle line with diameter d (integer in basic units u) with leftmost point at the current posi-

tion; then move the current position to the rightmost point of the circle.

DE h v 〈line-break〉
Draw a solid ellipse in the current fill color with a horizontal diameter of h and a vertical diameter

of v (both integers in basic units u) with the leftmost point at the current position; then move to the

rightmost point of the ellipse. This command is a groff extension.

groff 1.23.0 2 July 2023 4

groff_out(5) File Formats Manual groff_out(5)

De h v 〈line-break〉
Draw an outlined ellipse with a horizontal diameter of h and a vertical diameter of v (both integers

in basic units u) with the leftmost point at current position; then move to the rightmost point of the

ellipse.

DF color-scheme [component . . .] 〈line-break〉
Set fill color for solid drawing objects using different color schemes; the analogous command for

setting the color of text, line graphics, and the outline of graphic objects is m. The color compo-

nents are specified as integer arguments between 0 and 65536. The number of color components

and their meaning vary for the different color schemes. These commands are generated by the

groff escape sequences \D'F . . .’ and \M (with no other corresponding graphics commands). This

command is a groff extension.

DFc cyan magenta yellow 〈line-break〉
Set fill color for solid drawing objects using the CMY color scheme, having the 3 color

components cyan, magenta, and yellow.

DFd 〈line-break〉
Set fill color for solid drawing objects to the default fill color value (black in most cases).

No component arguments.

DFg gray 〈line-break〉
Set fill color for solid drawing objects to the shade of gray given by the argument, an inte-

ger between 0 (black) and 65536 (white).

DFk cyan magenta yellow black 〈line-break〉
Set fill color for solid drawing objects using the CMYK color scheme, having the 4 color

components cyan, magenta, yellow, and black.

DFr red green blue 〈line-break〉
Set fill color for solid drawing objects using the RGB color scheme, having the 3 color

components red, green, and blue.

Df n 〈line-break〉
The argument n must be an integer in the range −32767 to 32767.

0 ≤ n ≤ 1000

Set the color for filling solid drawing objects to a shade of gray, where 0 corresponds to

solid white, 1000 (the default) to solid black, and values in between to intermediate

shades of gray; this is obsoleted by command DFg.

n < 0 or n > 1000

Set the filling color to the color that is currently being used for the text and the outline,

see command m. For example, the command sequence

mg 0 0 65536
Df −1

sets all colors to blue.

This command is a groff extension.

Dl h v 〈line-break〉
Draw line from current position to offset (h, v) (integers in basic units u); then set current position

to the end of the drawn line.

Dp h
1

v
1

h
2

v
2

. . . h
n

v
n
〈line-break〉

Draw a polygon line from current position to offset (h
1
, v

1
), from there to offset (h

2
, v

2
), etc., up to

offset (h
n
, v

n
), and from there back to the starting position. For historical reasons, the position is

changed by adding the sum of all arguments with odd index to the current horizontal position and

the even ones to the vertical position. Although this doesn’t make sense it is kept for compatibil-

ity. This command is a groff extension.

groff 1.23.0 2 July 2023 5

groff_out(5) File Formats Manual groff_out(5)

DP h
1

v
1

h
2

v
2

. . . h
n

v
n
〈line-break〉

The same macro as the corresponding Dp command with the same arguments, but draws a solid

polygon in the current fill color rather than an outlined polygon. The position is changed in the

same way as with Dp. This command is a groff extension.

Dt n 〈line-break〉
Set the current line thickness to n (an integer in basic units u) if n > 0; if n = 0 select the smallest

available line thickness; otherwise, the line thickness is made proportional to the type size, which

is the default. For historical reasons, the horizontal position is changed by adding the argument to

the current horizontal position, while the vertical position is not changed. Although this doesn’t

make sense, it is kept for compatibility. This command is a groff extension.

Device control commands

Each device control command starts with the letter x followed by a space character (optional or arbitrary

space/tab in groff) and a subcommand letter or word; each argument (if any) must be preceded by a syntac-

tical space. All x commands are terminated by a syntactical line break; no device control command can be

followed by another command on the same line (except a comment).

The subcommand is basically a single letter, but to increase readability, it can be written as a word, i.e., an

arbitrary sequence of characters terminated by the next tab, space, or newline character. All characters of

the subcommand word but the first are simply ignored. For example, troff outputs the initialization com-

mand x i as x init and the resolution command x r as x res. But writings like x i_like_groff and

x roff_is_groff are accepted as well to mean the same commands.

In the following, the syntax element 〈line-break〉 means a syntactical line break as defined in subsection

“Separation” above.

xF name 〈line-break〉
(Filename control command)

Use name as the intended name for the current file in error reports. This is useful for remembering

the original file name when groff uses an internal piping mechanism. The input file is not changed

by this command. This command is a groff extension.

xf n s 〈line-break〉
(font control command)

Mount font position n (a non-negative integer) with font named s (a text word); see groff_font(5).

xH n 〈line-break〉
(Height control command)

Set character height to n (a positive integer in scaled points z). Classical troff used the unit points

(p) instead; see section “Compatibility” below.

xi 〈line-break〉
(init control command)

Initialize device. This is the third command of the prologue.

xp 〈line-break〉
(pause control command)

Parsed but ignored. The classical documentation reads pause device, can be restarted .

xr n h v 〈line-break〉
(resolution control command)

Resolution is n, while h is the minimal horizontal motion, and v the minimal vertical motion pos-

sible with this device; all arguments are positive integers in basic units u per inch. This is the sec-

ond command of the prologue.

xS n 〈line-break〉
(Slant control command)

Set slant to n degrees (an integer in basic units u).

groff 1.23.0 2 July 2023 6

groff_out(5) File Formats Manual groff_out(5)

xs 〈line-break〉
(stop control command)

Terminates the processing of the current file; issued as the last command of any intermediate troff

output.

xt 〈line-break〉
(trailer control command)

Generate trailer information, if any. In groff, this is currently ignored.

xT xxx 〈line-break〉
(Typesetter control command)

Set the name of the output driver to xxx, a sequence of non-whitespace characters terminated by

whitespace. The possible names correspond to those of groff ’s −T option. This is the first com-

mand of the prologue.

xu n 〈line-break〉
(underline control command)

Configure underlining of spaces. If n is 1, start underlining of spaces; if n is 0, stop underlining of

spaces. This is needed for the cu request in nroff mode and is ignored otherwise. This command

is a groff extension.

xX anything 〈line-break〉
(X-escape control command)

Send string anything uninterpreted to the device. If the line following this command starts with a

+ character this line is interpreted as a continuation line in the following sense. The + is ignored,

but a newline character is sent instead to the device, the rest of the line is sent uninterpreted. The

same applies to all following lines until the first character of a line is not a + character. This com-

mand is generated by the groff escape sequence \X. The line-continuing feature is a groff exten-

sion.

Obsolete command

In classical troff output, emitting a single glyph was mostly done by a very strange command that com-

bined a horizontal move and the printing of a glyph. It didn’t hav e a command code, but is represented by a

3-character argument consisting of exactly 2 digits and a character.

ddc Move right dd (exactly two decimal digits) basic units u, then print glyph with single-letter

name c.

In groff , arbitrary syntactical space around and within this command is allowed to be added.

Only when a preceding command on the same line ends with an argument of variable length a sep-

arating space is obligatory. In classical troff , large clusters of these and other commands were

used, mostly without spaces; this made such output almost unreadable.

For modern high-resolution devices, this command does not make sense because the width of the glyphs

can become much larger than two decimal digits. In groff , it is used only for output to the X75, X75−12,

X100, and X100−12 devices. For others, the commands t and u provide greater functionality and superior

troubleshooting capacity.

Postprocessing
The roff postprocessors are programs that have the task to translate the intermediate output into actions that

are sent to a device. A device can be some piece of hardware such as a printer, or a software file format

suitable for graphical or text processing. The groff system provides powerful means that make the pro-

gramming of such postprocessors an easy task.

There is a library function that parses the intermediate output and sends the information obtained to the de-

vice via methods of a class with a common interface for each device. So a groff postprocessor must only

redefine the methods of this class. For details, see the reference in section “Files” below.

Example
This section presents the intermediate output generated from the same input for three different devices.

The input is the sentence hell world fed into groff on the command line.

groff 1.23.0 2 July 2023 7

groff_out(5) File Formats Manual groff_out(5)

• High-resolution device ps

shell> echo "hell world" | groff −Z −T ps

x T ps
x res 72000 1 1
x init
p1
x font 5 TR
f5
s10000
V12000
H72000
thell
wh2500
tw
H96620
torld
n12000 0
x trailer
V792000
x stop

This output can be fed into the postprocessor grops(1) to get its representation as a PostScript file, or

gropdf (1) to output directly to PDF.

• Low-resolution device latin1

This is similar to the high-resolution device except that the positioning is done at a minor scale. Some

comments (lines starting with #) were added for clarification; they were not generated by the format-

ter.

shell> "hell world" | groff −Z −T latin1

prologue

x T latin1
x res 240 24 40
x init
begin a new page

p1
font setup

x font 1 R
f1
s10
initial positioning on the page

V40
H0
write text 'hell'

thell
inform about a space, and do it by a horizontal jump

wh24
write text 'world'

tworld
announce line break, but do nothing because ...

n40 0
... the end of the document has been reached

x trailer
V2640
x stop

groff 1.23.0 2 July 2023 8

groff_out(5) File Formats Manual groff_out(5)

This output can be fed into the postprocessor grotty(1) to get a formatted text document.

• Classical style output

As a computer monitor has a very low resolution compared to modern printers the intermediate output

for the X devices can use the jump-and-write command with its 2-digit displacements.

shell> "hell world" | groff −Z −T X100

x T X100
x res 100 1 1
x init
p1
x font 5 TR
f5
s10
V16
H100
write text with old-style jump-and-write command

ch07e07l03lw06w11o07r05l03dh7
n16 0
x trailer
V1100
x stop

This output can be fed into the postprocessor xditview(1x) or gxditview(1) for displaying in X.

Due to the obsolete jump-and-write command, the text clusters in the classical output are almost unread-

able.

Compatibility
The intermediate output language of the classical troff was first documented in [CSTR #97]. The groff in-

termediate output format is compatible with this specification except for the following features.

• The classical quasi device independence is not yet implemented.

• The old hardware was very different from what we use today. So the groff devices are also fundamen-

tally different from the ones in classical troff . For example, the classical PostScript device was called

post and had a resolution of 720 units per inch, while groff ’s ps device has a resolution of 72000 units

per inch. Maybe, by implementing some rescaling mechanism similar to the classical quasi device in-

dependence, these could be integrated into modern groff .

• The B-spline command D~ is correctly handled by the intermediate output parser, but the drawing

routines aren’t implemented in some of the postprocessor programs.

• The argument of the commands s and x H has the implicit unit scaled point z in groff , while classical

troff had point (p). This isn’t an incompatibility, but a compatible extension, for both units coincide

for all devices without a sizescale parameter, including all classical and the groff text devices. The

few groff devices with a sizescale parameter either did not exist, had a different name, or seem to have

had a different resolution. So conflicts with classical devices are very unlikely.

• The position changing after the commands Dp, DP, and Dt is illogical, but as old versions of groff

used this feature it is kept for compatibility reasons.

The differences between groff and classical troff are documented in groff_diff (7).

Files
/usr/local/share/groff/1.23.0/font/devname /DESC

describes the output device name.

groff 1.23.0 2 July 2023 9

groff_out(5) File Formats Manual groff_out(5)

Authors
James Clark wrote an early version of this document, which described only the differences between AT&T

device-independent troff ’s output format and that of GNU roff . The present version was completely rewrit-

ten in 2001 by Bernd Warken 〈groff−bernd.warken−72@web.de〉 .

See also
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff

manual. You can browse it interactively with “info groff”.

“Troff User’s Manual” by Joseph F. Ossanna, 1976 (revised by Brian W. Kernighan, 1992), AT&T Bell

Laboratories Computing Science Technical Report No. 54, widely called simply “CSTR #54”, documents

the language, device and font description file formats, and device-independent output format referred to

collectively in groff documentation as “AT&T troff ”.

“A Typesetter-independent TROFF” by Brian W. Kernighan, 1982, AT&T Bell Laboratories Computing

Science Technical Report No. 97, provides additional insights into the device and font description file for-

mats and device-independent output format.

groff (1)

documents the −Z option and contains pointers to further groff documentation.

groff (7)

describes the groff language, including its escape sequences and system of units.

groff_font(5)

details the device scaling parameters of device DESC files.

troff (1) generates the device-independent intermediate output documented here.

roff (7) presents historical aspects and the general structure of roff systems.

groff_diff (7)

enumerates differences between the intermediate output produced by AT&T troff and that of

groff .

gxditview(1)

is a viewer for intermediate output.

Roff.js 〈https://github.com/Alhadis/Roff.js/〉 is a viewer for intermediate output written in JavaScript.

grodvi(1), grohtml(1), grolbp(1), grolj4(1), gropdf (1), grops(1), and grotty(1) are groff postprocessors.

groff 1.23.0 2 July 2023 10

