
NAME
gss_accept_sec_context - Accept a security context initiated by a peer application

SYNOPSIS
#include <gssapi/gssapi.h>

OM_uint32

gss_accept_sec_context(OM_uint32 *minor_status, gss_ctx_id_t *context_handle,

const gss_cred_id_t acceptor_cred_handle, const gss_buffer_t input_token_buffer,

const gss_channel_bindings_t input_chan_bindings, const gss_name_t *src_name,

gss_OID *mech_type, gss_buffer_t output_token, OM_uint32 *ret_flags, OM_uint32 *time_rec,

gss_cred_id_t *delegated_cred_handle);

DESCRIPTION
Allows a remotely initiated security context between the application and a remote peer to be established.

The routine may return a output_token which should be transferred to the peer application, where the

peer application will present it to gss_init_sec_context(3). If no token need be sent,

gss_accept_sec_context() will indicate this by setting the length field of the output_token argument to

zero. To complete the context establishment, one or more reply tokens may be required from the peer

application; if so, gss_accept_sec_context() will return a status flag of GSS_S_CONTINUE_NEEDED,

in which case it should be called again when the reply token is received from the peer application,

passing the token to gss_accept_sec_context() via the input_token parameters.

Portable applications should be constructed to use the token length and return status to determine

whether a token needs to be sent or waited for. Thus a typical portable caller should always invoke

gss_accept_sec_context() within a loop:

gss_ctx_id_t context_hdl = GSS_C_NO_CONTEXT;

do {

receive_token_from_peer(input_token);

maj_stat = gss_accept_sec_context(&min_stat,

&context_hdl,

cred_hdl,

input_token,

input_bindings,

&client_name,

&mech_type,

output_token,

&ret_flags,

GSS_ACCEPT_SEC_CONTEXT(3) FreeBSD Library Functions Manual (prm)

FreeBSD 14.2-RELEASE January 26, 2010 FreeBSD 14.2-RELEASE



&time_rec,

&deleg_cred);

if (GSS_ERROR(maj_stat)) {

report_error(maj_stat, min_stat);

};

if (output_token->length != 0) {

send_token_to_peer(output_token);

gss_release_buffer(&min_stat, output_token);

};

if (GSS_ERROR(maj_stat)) {

if (context_hdl != GSS_C_NO_CONTEXT)

gss_delete_sec_context(&min_stat,

&context_hdl,

GSS_C_NO_BUFFER);

break;

};

} while (maj_stat & GSS_S_CONTINUE_NEEDED);

Whenever the routine returns a major status that includes the value GSS_S_CONTINUE_NEEDED, the

context is not fully established and the following restrictions apply to the output parameters:

The value returned via the time_rec parameter is undefined unless the accompanying ret_flags parameter

contains the bit GSS_C_PROT_READY_FLAG, indicating that per-message services may be applied in

advance of a successful completion status, the value returned via the mech_type parameter may be

undefined until the routine returns a major status value of GSS_S_COMPLETE.

The values of the GSS_C_DELEG_FLAG, GSS_C_MUTUAL_FLAG, GSS_C_REPLAY_FLAG,

GSS_C_SEQUENCE_FLAG, GSS_C_CONF_FLAG, GSS_C_INTEG_FLAG and

GSS_C_ANON_FLAG bits returned via the ret_flags parameter should contain the values that the

implementation expects would be valid if context establishment were to succeed.

The values of the GSS_C_PROT_READY_FLAG and GSS_C_TRANS_FLAG bits within ret_flags

should indicate the actual state at the time gss_accept_sec_context() returns, whether or not the context

is fully established.

Although this requires that GSS-API implementations set the GSS_C_PROT_READY_FLAG in the

final ret_flags returned to a caller (i.e. when accompanied by a GSS_S_COMPLETE status code),

applications should not rely on this behavior as the flag was not defined in Version 1 of the GSS-API.

Instead, applications should be prepared to use per-message services after a successful context

GSS_ACCEPT_SEC_CONTEXT(3) FreeBSD Library Functions Manual (prm)

FreeBSD 14.2-RELEASE January 26, 2010 FreeBSD 14.2-RELEASE



establishment, according to the GSS_C_INTEG_FLAG and GSS_C_CONF_FLAG values.

All other bits within the ret_flags argument should be set to zero. While the routine returns

GSS_S_CONTINUE_NEEDED, the values returned via the ret_flags argument indicate the services that

the implementation expects to be available from the established context.

If the initial call of gss_accept_sec_context() fails, the implementation should not create a context

object, and should leave the value of the context_handle parameter set to GSS_C_NO_CONTEXT to

indicate this. In the event of a failure on a subsequent call, the implementation is permitted to delete the

"half-built" security context (in which case it should set the context_handle parameter to

GSS_C_NO_CONTEXT ), but the preferred behavior is to leave the security context (and the

context_handle parameter) untouched for the application to delete (using gss_delete_sec_context(3) ).

During context establishment, the informational status bits GSS_S_OLD_TOKEN and

GSS_S_DUPLICATE_TOKEN indicate fatal errors, and GSS-API mechanisms should always return

them in association with a routine error of GSS_S_FAILURE. This requirement for pairing did not exist

in version 1 of the GSS-API specification, so applications that wish to run over version 1

implementations must special-case these codes.

PARAMETERS
context_handle Context handle for new context. Supply GSS_C_NO_CONTEXT for first call;

use value returned in subsequent calls. Once gss_accept_sec_context() has

returned a value via this parameter, resources have been assigned to the

corresponding context, and must be freed by the application after use with a call to

gss_delete_sec_context(3).

acceptor_cred_handle

Credential handle claimed by context acceptor. Specify

GSS_C_NO_CREDENTIAL to accept the context as a default principal. If

GSS_C_NO_CREDENTIAL is specified, but no default acceptor principal is

defined, GSS_S_NO_CRED will be returned.

input_token_buffer Token obtained from remote application.

input_chan_bindings Application-specified bindings. Allows application to securely bind channel

identification information to the security context. If channel bindings are not

used, specify GSS_C_NO_CHANNEL_BINDINGS.

src_name Authenticated name of context initiator. After use, this name should be

deallocated by passing it to gss_release_name(3). If not required, specify NULL.

GSS_ACCEPT_SEC_CONTEXT(3) FreeBSD Library Functions Manual (prm)

FreeBSD 14.2-RELEASE January 26, 2010 FreeBSD 14.2-RELEASE



mech_type Security mechanism used. The returned OID value will be a pointer into static

storage, and should be treated as read-only by the caller (in particular, it does not

need to be freed). If not required, specify NULL.

output_token Token to be passed to peer application. If the length field of the returned token

buffer is 0, then no token need be passed to the peer application. If a non-zero

length field is returned, the associated storage must be freed after use by the

application with a call to gss_release_buffer(3).

ret_flags Contains various independent flags, each of which indicates that the context

supports a specific service option. If not needed, specify NULL. Symbolic names

are provided for each flag, and the symbolic names corresponding to the required

flags should be logically-ANDed with the ret_flags value to test whether a given

option is supported by the context. The flags are:

GSS_C_DELEG_FLAG

True Delegated credentials are available via the delegated_cred_handle

parameter

False No credentials were delegated

GSS_C_MUTUAL_FLAG

True Remote peer asked for mutual authentication

False Remote peer did not ask for mutual authentication

GSS_C_REPLAY_FLAG

True Replay of protected messages will be detected

False Replayed messages will not be detected

GSS_C_SEQUENCE_FLAG

True Out-of-sequence protected messages will be detected

False Out-of-sequence messages will not be detected

GSS_ACCEPT_SEC_CONTEXT(3) FreeBSD Library Functions Manual (prm)

FreeBSD 14.2-RELEASE January 26, 2010 FreeBSD 14.2-RELEASE



GSS_C_CONF_FLAG

True Confidentiality service may be invoked by calling the gss_wrap(3)

routine

False No confidentiality service (via gss_wrap(3)) available. gss_wrap(3)

will provide message encapsulation, data-origin authentication and

integrity services only.

GSS_C_INTEG_FLAG

True Integrity service may be invoked by calling either gss_get_mic(3) or

gss_wrap(3) routines.

False Per-message integrity service unavailable.

GSS_C_ANON_FLAG

True The initiator does not wish to be authenticated; the src_name

parameter (if requested) contains an anonymous internal name.

False The initiator has been authenticated normally.

GSS_C_PROT_READY_FLAG

True Protection services (as specified by the states of the

GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available if

the accompanying major status return value is either

GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED.

False Protection services (as specified by the states of the

GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available

only if the accompanying major status return value is

GSS_S_COMPLETE.

GSS_C_TRANS_FLAG

True The resultant security context may be transferred to other processes

via a call to gss_export_sec_context(3).

GSS_ACCEPT_SEC_CONTEXT(3) FreeBSD Library Functions Manual (prm)

FreeBSD 14.2-RELEASE January 26, 2010 FreeBSD 14.2-RELEASE



False The security context is not transferable.

All other bits should be set to zero.

time_rec Number of seconds for which the context will remain valid. Specify NULL if not

required.

delegated_cred_handle

Credential handle for credentials received from context initiator. Only valid if

GSS_C_DELEG_FLAG in ret_flags is true, in which case an explicit credential

handle (i.e. not GSS_C_NO_CREDENTIAL) will be returned; if false,

gss_accept_context() will set this parameter to GSS_C_NO_CREDENTIAL. If a

credential handle is returned, the associated resources must be released by the

application after use with a call to gss_release_cred(3). Specify NULL if not

required.

minor_status Mechanism specific status code.

RETURN VALUES
GSS_S_CONTINUE_NEEDED Indicates that a token from the peer application is required to

complete the context, and that gss_accept_sec_context must be

called again with that token.

GSS_S_DEFECTIVE_TOKEN Indicates that consistency checks performed on the input_token

failed.

GSS_S_DEFECTIVE_CREDENTIAL Indicates that consistency checks performed on the credential

failed.

GSS_S_NO_CRED The supplied credentials were not valid for context acceptance,

or the credential handle did not reference any credentials.

GSS_S_CREDENTIALS_EXPIRED The referenced credentials have expired.

GSS_S_BAD_BINDINGS The input_token contains different channel bindings to those

specified via the input_chan_bindings parameter.

GSS_S_NO_CONTEXT Indicates that the supplied context handle did not refer to a valid

context.

GSS_ACCEPT_SEC_CONTEXT(3) FreeBSD Library Functions Manual (prm)

FreeBSD 14.2-RELEASE January 26, 2010 FreeBSD 14.2-RELEASE



GSS_S_BAD_SIG The input_token contains an invalid MIC.

GSS_S_OLD_TOKEN The input_token was too old. This is a fatal error during context

establishment.

GSS_S_DUPLICATE_TOKEN The input_token is valid, but is a duplicate of a token already

processed. This is a fatal error during context establishment.

GSS_S_BAD_MECH The received token specified a mechanism that is not supported

by the implementation or the provided credential.

SEE ALSO
gss_delete_sec_context(3), gss_export_sec_context(3), gss_get_mic(3), gss_init_sec_context(3),

gss_release_buffer(3), gss_release_cred(3), gss_release_name(3), gss_wrap(3)

STANDARDS
RFC 2743 Generic Security Service Application Program Interface Version 2, Update 1

RFC 2744 Generic Security Service API Version 2 : C-bindings

HISTORY
The gss_accept_sec_context function first appeared in FreeBSD 7.0.

AUTHORS
John Wray, Iris Associates

COPYRIGHT
Copyright (C) The Internet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published

and distributed, in whole or in part, without restriction of any kind, provided that the above copyright

notice and this paragraph are included on all such copies and derivative works. However, this document

itself may not be modified in any way, such as by removing the copyright notice or references to the

Internet Society or other Internet organizations, except as needed for the purpose of developing Internet

standards in which case the procedures for copyrights defined in the Internet Standards process must be

followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or

its successors or assigns.

GSS_ACCEPT_SEC_CONTEXT(3) FreeBSD Library Functions Manual (prm)

FreeBSD 14.2-RELEASE January 26, 2010 FreeBSD 14.2-RELEASE



This document and the information contained herein is provided on an "AS IS" basis and THE

INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY

WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY

RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE.

GSS_ACCEPT_SEC_CONTEXT(3) FreeBSD Library Functions Manual (prm)

FreeBSD 14.2-RELEASE January 26, 2010 FreeBSD 14.2-RELEASE


