
NAME
h2xs - convert .h C header files to Perl extensions

SYNOPSIS
h2xs [OPTIONS ...] [headerfile ... [extra_libraries]]

h2xs -h|-?|--help

DESCRIPTION
h2xs builds a Perl extension from C header files. The extension will include functions which can be

used to retrieve the value of any #define statement which was in the C header files.

The module_name will be used for the name of the extension. If module_name is not supplied then the

name of the first header file will be used, with the first character capitalized.

If the extension might need extra libraries, they should be included here. The extension Makefile.PL

will take care of checking whether the libraries actually exist and how they should be loaded. The

extra libraries should be specified in the form -lm -lposix, etc, just as on the cc command line. By

default, the Makefile.PL will search through the library path determined by Configure. That path can

be augmented by including arguments of the form -L/another/library/path in the extra-libraries

argument.

In spite of its name, h2xs may also be used to create a skeleton pure Perl module. See the -X option.

OPTIONS
-A, --omit-autoload

Omit all autoload facilities. This is the same as -c but also removes the "use AutoLoader"

statement from the .pm file.

-B, --beta-version
Use an alpha/beta style version number. Causes version number to be "0.00_01" unless -v is

specified.

-C, --omit-changes
Omits creation of the Changes file, and adds a HISTORY section to the POD template.

-F, --cpp-flags=addflags

Additional flags to specify to C preprocessor when scanning header for function declarations.

Writes these options in the generated Makefile.PL too.

H2XS(1) Perl Programmers Reference Guide H2XS(1)

perl v5.36.3 2024-12-22 H2XS(1)

-M, --func-mask=regular expression

selects functions/macros to process.

-O, --overwrite-ok
Allows a pre-existing extension directory to be overwritten.

-P, --omit-pod
Omit the autogenerated stub POD section.

-X, --omit-XS
Omit the XS portion. Used to generate a skeleton pure Perl module. "-c" and "-f" are implicitly

enabled.

-a, --gen-accessors
Generate an accessor method for each element of structs and unions. The generated methods are

named after the element name; will return the current value of the element if called without

additional arguments; and will set the element to the supplied value (and return the new value) if

called with an additional argument. Embedded structures and unions are returned as a pointer

rather than the complete structure, to facilitate chained calls.

These methods all apply to the Ptr type for the structure; additionally two methods are

constructed for the structure type itself, "_to_ptr" which returns a Ptr type pointing to the same

structure, and a "new" method to construct and return a new structure, initialised to zeroes.

-b, --compat-version=version

Generates a .pm file which is backwards compatible with the specified perl version.

For versions < 5.6.0, the changes are.

- no use of ’our’ (uses ’use vars’ instead)

- no ’use warnings’

Specifying a compatibility version higher than the version of perl you are using to run h2xs will

have no effect. If unspecified h2xs will default to compatibility with the version of perl you are

using to run h2xs.

-c, --omit-constant
Omit "constant()" from the .xs file and corresponding specialised "AUTOLOAD" from the .pm

file.

-d, --debugging

H2XS(1) Perl Programmers Reference Guide H2XS(1)

perl v5.36.3 2024-12-22 H2XS(1)

Turn on debugging messages.

-e, --omit-enums=[regular expression]

If regular expression is not given, skip all constants that are defined in a C enumeration.

Otherwise skip only those constants that are defined in an enum whose name matches regular

expression.

Since regular expression is optional, make sure that this switch is followed by at least one other

switch if you omit regular expression and have some pending arguments such as header-file

names. This is ok:

h2xs -e -n Module::Foo foo.h

This is not ok:

h2xs -n Module::Foo -e foo.h

In the latter, foo.h is taken as regular expression.

-f, --force
Allows an extension to be created for a header even if that header is not found in standard

include directories.

-g, --global
Include code for safely storing static data in the .xs file. Extensions that do no make use of static

data can ignore this option.

-h, -?, --help
Print the usage, help and version for this h2xs and exit.

-k, --omit-const-func
For function arguments declared as "const", omit the const attribute in the generated XS code.

-m, --gen-tied-var
Experimental: for each variable declared in the header file(s), declare a perl variable of the same

name magically tied to the C variable.

-n, --name=module_name

Specifies a name to be used for the extension, e.g., -n RPC::DCE

H2XS(1) Perl Programmers Reference Guide H2XS(1)

perl v5.36.3 2024-12-22 H2XS(1)

-o, --opaque-re=regular expression

Use "opaque" data type for the C types matched by the regular expression, even if these types are

"typedef"-equivalent to types from typemaps. Should not be used without -x.

This may be useful since, say, types which are "typedef"-equivalent to integers may represent

OS-related handles, and one may want to work with these handles in OO-way, as in

"$handle->do_something()". Use "-o ." if you want to handle all the "typedef"ed types as opaque

types.

The type-to-match is whitewashed (except for commas, which have no whitespace before them,

and multiple "*" which have no whitespace between them).

-p, --remove-prefix=prefix

Specify a prefix which should be removed from the Perl function names, e.g., -p sec_rgy_ This

sets up the XS PREFIX keyword and removes the prefix from functions that are autoloaded via

the "constant()" mechanism.

-s, --const-subs=sub1,sub2

Create a perl subroutine for the specified macros rather than autoload with the constant()
subroutine. These macros are assumed to have a return type of char *, e.g.,

-s sec_rgy_wildcard_name,sec_rgy_wildcard_sid.

-t, --default-type=type

Specify the internal type that the constant() mechanism uses for macros. The default is IV

(signed integer). Currently all macros found during the header scanning process will be assumed

to have this type. Future versions of "h2xs" may gain the ability to make educated guesses.

--use-new-tests
When --compat-version (-b) is present the generated tests will use "Test::More" rather than

"Test" which is the default for versions before 5.6.2. "Test::More" will be added to

PREREQ_PM in the generated "Makefile.PL".

--use-old-tests
Will force the generation of test code that uses the older "Test" module.

--skip-exporter
Do not use "Exporter" and/or export any symbol.

--skip-ppport
Do not use "Devel::PPPort": no portability to older version.

H2XS(1) Perl Programmers Reference Guide H2XS(1)

perl v5.36.3 2024-12-22 H2XS(1)

--skip-autoloader
Do not use the module "AutoLoader"; but keep the constant() function and "sub AUTOLOAD"

for constants.

--skip-strict
Do not use the pragma "strict".

--skip-warnings
Do not use the pragma "warnings".

-v, --version=version

Specify a version number for this extension. This version number is added to the templates. The

default is 0.01, or 0.00_01 if "-B" is specified. The version specified should be numeric.

-x, --autogen-xsubs
Automatically generate XSUBs basing on function declarations in the header file. The package

"C::Scan" should be installed. If this option is specified, the name of the header file may look

like "NAME1,NAME2". In this case NAME1 is used instead of the specified string, but XSUBs

are emitted only for the declarations included from file NAME2.

Note that some types of arguments/return-values for functions may result in

XSUB-declarations/typemap-entries which need hand-editing. Such may be objects which

cannot be converted from/to a pointer (like "long long"), pointers to functions, or arrays. See

also the section on "LIMITATIONS of -x".

EXAMPLES
Default behavior, extension is Rusers

h2xs rpcsvc/rusers

Same, but extension is RUSERS

h2xs -n RUSERS rpcsvc/rusers

Extension is rpcsvc::rusers. Still finds <rpcsvc/rusers.h>

h2xs rpcsvc::rusers

Extension is ONC::RPC. Still finds <rpcsvc/rusers.h>

h2xs -n ONC::RPC rpcsvc/rusers

Without constant() or AUTOLOAD

h2xs -c rpcsvc/rusers

H2XS(1) Perl Programmers Reference Guide H2XS(1)

perl v5.36.3 2024-12-22 H2XS(1)

Creates templates for an extension named RPC

h2xs -cfn RPC

Extension is ONC::RPC.

h2xs -cfn ONC::RPC

Extension is a pure Perl module with no XS code.

h2xs -X My::Module

Extension is Lib::Foo which works at least with Perl5.005_03.

Constants are created for all #defines and enums h2xs can find

in foo.h.

h2xs -b 5.5.3 -n Lib::Foo foo.h

Extension is Lib::Foo which works at least with Perl5.005_03.

Constants are created for all #defines but only for enums

whose names do not start with ’bar_’.

h2xs -b 5.5.3 -e ’^bar_’ -n Lib::Foo foo.h

Makefile.PL will look for library -lrpc in

additional directory /opt/net/lib

h2xs rpcsvc/rusers -L/opt/net/lib -lrpc

Extension is DCE::rgynbase

prefix "sec_rgy_" is dropped from perl function names

h2xs -n DCE::rgynbase -p sec_rgy_ dce/rgynbase

Extension is DCE::rgynbase

prefix "sec_rgy_" is dropped from perl function names

subroutines are created for sec_rgy_wildcard_name and

sec_rgy_wildcard_sid

h2xs -n DCE::rgynbase -p sec_rgy_ \

-s sec_rgy_wildcard_name,sec_rgy_wildcard_sid dce/rgynbase

Make XS without defines in perl.h, but with function declarations

visible from perl.h. Name of the extension is perl1.

When scanning perl.h, define -DEXT=extern -DdEXT= -DINIT(x)=

Extra backslashes below because the string is passed to shell.

Note that a directory with perl header files would

be added automatically to include path.

H2XS(1) Perl Programmers Reference Guide H2XS(1)

perl v5.36.3 2024-12-22 H2XS(1)

h2xs -xAn perl1 -F "-DEXT=extern -DdEXT= -DINIT\(x\)=" perl.h

Same with function declaration in proto.h as visible from perl.h.

h2xs -xAn perl2 perl.h,proto.h

Same but select only functions which match /^av_/

h2xs -M ’^av_’ -xAn perl2 perl.h,proto.h

Same but treat SV* etc as "opaque" types

h2xs -o ’^[S]V *$’ -M ’^av_’ -xAn perl2 perl.h,proto.h

Extension based on .h and .c files
Suppose that you have some C files implementing some functionality, and the corresponding header

files. How to create an extension which makes this functionality accessible in Perl? The example

below assumes that the header files are interface_simple.h and interface_hairy.h, and you want the perl

module be named as "Ext::Ension". If you need some preprocessor directives and/or linking with

external libraries, see the flags "-F", "-L" and "-l" in "OPTIONS".

Find the directory name

Start with a dummy run of h2xs:

h2xs -Afn Ext::Ension

The only purpose of this step is to create the needed directories, and let you know the names of

these directories. From the output you can see that the directory for the extension is Ext/Ension.

Copy C files

Copy your header files and C files to this directory Ext/Ension.

Create the extension

Run h2xs, overwriting older autogenerated files:

h2xs -Oxan Ext::Ension interface_simple.h interface_hairy.h

h2xs looks for header files after changing to the extension directory, so it will find your header

files OK.

Archive and test

As usual, run

H2XS(1) Perl Programmers Reference Guide H2XS(1)

perl v5.36.3 2024-12-22 H2XS(1)

cd Ext/Ension

perl Makefile.PL

make dist

make

make test

Hints

It is important to do "make dist" as early as possible. This way you can easily merge(1) your

changes to autogenerated files if you decide to edit your ".h" files and rerun h2xs.

Do not forget to edit the documentation in the generated .pm file.

Consider the autogenerated files as skeletons only, you may invent better interfaces than what

h2xs could guess.

Consider this section as a guideline only, some other options of h2xs may better suit your needs.

ENVIRONMENT
No environment variables are used.

AUTHOR
Larry Wall and others

SEE ALSO
perl, perlxstut, ExtUtils::MakeMaker, and AutoLoader.

DIAGNOSTICS
The usual warnings if it cannot read or write the files involved.

LIMITATIONS of -x
h2xs would not distinguish whether an argument to a C function which is of the form, say, "int *", is an

input, output, or input/output parameter. In particular, argument declarations of the form

int

foo(n)

int *n

should be better rewritten as

int

H2XS(1) Perl Programmers Reference Guide H2XS(1)

perl v5.36.3 2024-12-22 H2XS(1)

foo(n)

int &n

if "n" is an input parameter.

Additionally, h2xs has no facilities to intuit that a function

int

foo(addr,l)

char *addr

int l

takes a pair of address and length of data at this address, so it is better to rewrite this function as

int

foo(sv)

SV *addr

PREINIT:

STRLEN len;

char *s;

CODE:

s = SvPV(sv,len);

RETVAL = foo(s, len);

OUTPUT:

RETVAL

or alternately

static int

my_foo(SV *sv)

{

STRLEN len;

char *s = SvPV(sv,len);

return foo(s, len);

}

MODULE = foo PACKAGE = foo PREFIX = my_

int

H2XS(1) Perl Programmers Reference Guide H2XS(1)

perl v5.36.3 2024-12-22 H2XS(1)

foo(sv)

SV *sv

See perlxs and perlxstut for additional details.

H2XS(1) Perl Programmers Reference Guide H2XS(1)

perl v5.36.3 2024-12-22 H2XS(1)

