
NAME
getch, wgetch, mvgetch, mvwgetch, ungetch, has_key - get (or push back) characters from curses
terminal keyboard

SYNOPSIS
#include <curses.h>

int getch(void);
int wgetch(WINDOW *win);

int mvgetch(int y, int x);
int mvwgetch(WINDOW *win, int y, int x);

int ungetch(int ch);

/* extension */

int has_key(int ch);

DESCRIPTION
Reading characters

The getch, wgetch, mvgetch and mvwgetch, routines read a character from the window. In no-delay

mode, if no input is waiting, the value ERR is returned. In delay mode, the program waits until the

system passes text through to the program. Depending on the setting of cbreak, this is after one

character (cbreak mode), or after the first newline (nocbreak mode). In half-delay mode, the program

waits until a character is typed or the specified timeout has been reached.

If echo is enabled, and the window is not a pad, then the character will also be echoed into the

designated window according to the following rules:

+o If the character is the current erase character, left arrow, or backspace, the cursor is moved one

space to the left and that screen position is erased as if delch had been called.

+o If the character value is any other KEY_ define, the user is alerted with a beep call.

+o If the character is a carriage-return, and if nl is enabled, it is translated to a line-feed after echoing.

+o Otherwise the character is simply output to the screen.

If the window is not a pad, and it has been moved or modified since the last call to wrefresh, wrefresh
will be called before another character is read.

curs_getch(3X) curs_getch(3X)

curs_getch(3X)

Keypad mode
If keypad is TRUE, and a function key is pressed, the token for that function key is returned instead of

the raw characters:

+o The predefined function keys are listed in <curses.h> as macros with values outside the range of

8-bit characters. Their names begin with KEY_.

+o Other (user-defined) function keys which may be defined using define_key(3X) have no names,

but also are expected to have values outside the range of 8-bit characters.

Thus, a variable intended to hold the return value of a function key must be of short size or larger.

When a character that could be the beginning of a function key is received (which, on modern

terminals, means an escape character), curses sets a timer. If the remainder of the sequence does not

come in within the designated time, the character is passed through; otherwise, the function key value

is returned. For this reason, many terminals experience a delay between the time a user presses the

escape key and the escape is returned to the program.

In ncurses, the timer normally expires after the value in ESCDELAY (see curs_variables(3X)). If

notimeout is TRUE, the timer does not expire; it is an infinite (or very large) value. Because function

keys usually begin with an escape character, the terminal may appear to hang in notimeout mode after

pressing the escape key until another key is pressed.

Ungetting characters
The ungetch routine places ch back onto the input queue to be returned by the next call to wgetch.

There is just one input queue for all windows.

Predefined key-codes
The following special keys are defined in <curses.h>.

+o Except for the special case KEY_RESIZE, it is necessary to enable keypad for getch to return

these codes.

+o Not all of these are necessarily supported on any particular terminal.

+o The naming convention may seem obscure, with some apparent misspellings (such as "RSUME"

for "resume"). The names correspond to the long terminfo capability names for the keys, and

were defined long ago, in the 1980s.

Name Key

curs_getch(3X) curs_getch(3X)

curs_getch(3X)

name

--

KEY_BREAK Break

key

KEY_DOWN The four arrow keys

...

KEY_UP

KEY_LEFT

KEY_RIGHT

KEY_HOME Home key (upward+left

arrow)

KEY_BACKSPACEBackspace

KEY_F0 Function keys; space for 64 keys

is reserved.

KEY_F(n) For 0 <= n <=

63

KEY_DL Delete

line

KEY_IL Insert

line

KEY_DC Delete

character

KEY_IC Insert char or enter insert

mode

KEY_EIC Exit insert char

mode

KEY_CLEAR Clear

screen

KEY_EOS Clear to end of

screen

KEY_EOL Clear to end of

line

KEY_SF Scroll 1 line

forward

KEY_SR Scroll 1 line backward

(reverse)

KEY_NPAGE Next

page

KEY_PPAGE Previous

page

curs_getch(3X) curs_getch(3X)

curs_getch(3X)

KEY_STAB Set

tab

KEY_CTAB Clear

tab

KEY_CATAB Clear all

tabs

KEY_ENTER Enter or

send

KEY_SRESET Soft (partial)

reset

KEY_RESET Reset or hard

reset

KEY_PRINT Print or

copy

KEY_LL Home down or bottom (lower left)

KEY_A1 Upper left of

keypad

KEY_A3 Upper right of keypad

KEY_B2 Center of

keypad

KEY_C1 Lower left of

keypad

KEY_C3 Lower right of

keypad

KEY_BTAB Back tab

key

KEY_BEG Beg(inning)

key

KEY_CANCEL Cancel

key

KEY_CLOSE Close

key

KEY_COMMAND Cmd (command)

key

KEY_COPY Copy

key

KEY_CREATE Create

key

KEY_END End

key

curs_getch(3X) curs_getch(3X)

curs_getch(3X)

KEY_EXIT Exit

key

KEY_FIND Find

key

KEY_HELP Help

key

KEY_MARK Mark

key

KEY_MESSAGE Message

key

KEY_MOUSE Mouse event read

KEY_MOVE Move

key

KEY_NEXT Next object

key

KEY_OPEN Open

key

KEY_OPTIONS Options

key

KEY_PREVIOUS Previous object

key

KEY_REDO Redo

key

KEY_REFERENCE Ref(erence)

key

KEY_REFRESH Refresh

key

KEY_REPLACE Replace

key

KEY_RESIZE Screen

resized

KEY_RESTART Restart

key

KEY_RESUME Resume

key

KEY_SAVE Save

key

KEY_SBEG Shifted beginning

key

KEY_SCANCEL Shifted cancel

curs_getch(3X) curs_getch(3X)

curs_getch(3X)

key

KEY_SCOMMANDShifted command

key

KEY_SCOPY Shifted copy

key

KEY_SCREATE Shifted create

key

KEY_SDC Shifted delete char

key

KEY_SDL Shifted delete line

key

KEY_SELECT Select

key

KEY_SEND Shifted end

key

KEY_SEOL Shifted clear line

key

KEY_SEXIT Shifted exit

key

KEY_SFIND Shifted find

key

KEY_SHELP Shifted help

key

KEY_SHOME Shifted home

key

KEY_SIC Shifted input

key

KEY_SLEFT Shifted left arrow

key

KEY_SMESSAGE Shifted message

key

KEY_SMOVE Shifted move

key

KEY_SNEXT Shifted next

key

KEY_SOPTIONS Shifted options

key

KEY_SPREVIOUS Shifted prev

key

KEY_SPRINT Shifted print

curs_getch(3X) curs_getch(3X)

curs_getch(3X)

key

KEY_SREDO Shifted redo

key

KEY_SREPLACE Shifted replace

key

KEY_SRIGHT Shifted right

arrow

KEY_SRSUME Shifted resume

key

KEY_SSAVE Shifted save

key

KEY_SSUSPEND Shifted suspend

key

KEY_SUNDO Shifted undo

key

KEY_SUSPEND Suspend

key

KEY_UNDO Undo

key

Keypad is arranged like this:

+-----+--------+-------+

| A1| up| A3 |

+-----+--------+-------+

|left| B2|right |
+-----+--------+-------+

| C1|down| C3 |

+-----+--------+-------+

A few of these predefined values do not correspond to a real key:

+o KEY_RESIZE is returned when the SIGWINCH signal has been detected (see initscr(3X) and

resizeterm(3X)). This code is returned whether or not keypad has been enabled.

+o KEY_MOUSE is returned for mouse-events (see curs_mouse(3X)). This code relies upon

whether or not keypad(3X) has been enabled, because (e.g., with xterm mouse prototocol) ncurses

must read escape sequences, just like a function key.

Testing key-codes
The has_key routine takes a key-code value from the above list, and returns TRUE or FALSE

curs_getch(3X) curs_getch(3X)

curs_getch(3X)

according to whether the current terminal type recognizes a key with that value.

The library also supports these extensions:

define_key
defines a key-code for a given string (see define_key(3X)).

key_defined
checks if there is a key-code defined for a given string (see key_defined(3X)).

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR (OK in the case

of ungetch) upon successful completion.

ungetch
returns ERR if there is no more room in the FIFO.

wgetch
returns ERR if the window pointer is null, or if its timeout expires without having any data,

or if the execution was interrupted by a signal (errno will be set to EINTR).

Functions with a "mv" prefix first perform a cursor movement using wmove, and return an error if the

position is outside the window, or if the window pointer is null.

NOTES
Use of the escape key by a programmer for a single character function is discouraged, as it will cause a

delay of up to one second while the keypad code looks for a following function-key sequence.

Some keys may be the same as commonly used control keys, e.g., KEY_ENTER versus control/M,

KEY_BACKSPACE versus control/H. Some curses implementations may differ according to whether

they treat these control keys specially (and ignore the terminfo), or use the terminfo definitions.

Ncurses uses the terminfo definition. If it says that KEY_ENTER is control/M, getch will return

KEY_ENTER when you press control/M.

Generally, KEY_ENTER denotes the character(s) sent by the Enter key on the numeric keypad:

+o the terminal description lists the most useful keys,

+o the Enter key on the regular keyboard is already handled by the standard ASCII characters for

carriage-return and line-feed,

curs_getch(3X) curs_getch(3X)

curs_getch(3X)

+o depending on whether nl or nonl was called, pressing "Enter" on the regular keyboard may return

either a carriage-return or line-feed, and finally

+o "Enter or send" is the standard description for this key.

When using getch, wgetch, mvgetch, or mvwgetch, nocbreak mode (nocbreak) and echo mode (echo)

should not be used at the same time. Depending on the state of the tty driver when each character is

typed, the program may produce undesirable results.

Note that getch, mvgetch, and mvwgetch may be macros.

Historically, the set of keypad macros was largely defined by the extremely function-key-rich keyboard

of the AT&T 7300, aka 3B1, aka Safari 4. Modern personal computers usually have only a small

subset of these. IBM PC-style consoles typically support little more than KEY_UP, KEY_DOWN,

KEY_LEFT, KEY_RIGHT, KEY_HOME, KEY_END, KEY_NPAGE, KEY_PPAGE, and function

keys 1 through 12. The Ins key is usually mapped to KEY_IC.

PORTABILITY
The *get* functions are described in the XSI Curses standard, Issue 4. They read single-byte

characters only. The standard specifies that they return ERR on failure, but specifies no error

conditions.

The echo behavior of these functions on input of KEY_ or backspace characters was not specified in

the SVr4 documentation. This description is adopted from the XSI Curses standard.

The behavior of getch and friends in the presence of handled signals is unspecified in the SVr4 and XSI

Curses documentation. Under historical curses implementations, it varied depending on whether the

operating system’s implementation of handled signal receipt interrupts a read(2) call in progress or not,

and also (in some implementations) depending on whether an input timeout or non-blocking mode has

been set.

KEY_MOUSE is mentioned in XSI Curses, along with a few related terminfo capabilities, but no

higher-level functions use the feature. The implementation in ncurses is an extension.

KEY_RESIZE is an extension first implemented for ncurses. NetBSD curses later added this

extension.

Programmers concerned about portability should be prepared for either of two cases: (a) signal receipt

does not interrupt getch; (b) signal receipt interrupts getch and causes it to return ERR with errno set to

EINTR.

curs_getch(3X) curs_getch(3X)

curs_getch(3X)

The has_key function is unique to ncurses. We recommend that any code using it be conditionalized

on the NCURSES_VERSION feature macro.

SEE ALSO
curses(3X), curs_inopts(3X), curs_mouse(3X), curs_move(3X), curs_outopts(3X), curs_refresh(3X),

curs_variables(3X), resizeterm(3X).

Comparable functions in the wide-character (ncursesw) library are described in curs_get_wch(3X).

curs_getch(3X) curs_getch(3X)

curs_getch(3X)

