
NAME
ibv_create_flow, ibv_destroy_flow - create or destroy flow steering rules

SYNOPSIS
#include <infiniband/verbs.h>

struct ibv_flow *ibv_create_flow(struct ibv_qp *qp,
struct ibv_flow_attr *flow_attr);

int ibv_destroy_flow(struct ibv_flow *flow_id);

DESCRIPTION
ibv_create_flow()

allows a user application QP qp to be attached into a specified flow flow which is defined in

<infiniband/verbs.h>

struct ibv_flow_attr {

uint32_t comp_mask; /* Future extendibility */

enum ibv_flow_attr_type type; /* Rule type - see below */

uint16_t size; /* Size of command */

uint16_t priority; /* Rule priority - see below */

uint8_t num_of_specs; /* Number of ibv_flow_spec_xxx */

uint8_t port; /* The uplink port number */

uint32_t flags; /* Extra flags for rule - see below */

/* Following are the optional layers according to user request

* struct ibv_flow_spec_xxx

* struct ibv_flow_spec_yyy

*/

};

enum ibv_flow_attr_type {

IBV_FLOW_ATTR_NORMAL = 0x0, /* Steering according to rule specifications */

IBV_FLOW_ATTR_ALL_DEFAULT = 0x1, /* Default unicast and multicast rule - receive all Eth

IBV_FLOW_ATTR_MC_DEFAULT = 0x2, /* Default multicast rule - receive all Eth multicast traffic

IBV_FLOW_ATTR_SNIFFER = 0x3, /* Sniffer rule - receive all port traffic */

};

enum ibv_flow_flags {

IBV_FLOW_ATTR_FLAGS_ALLOW_LOOP_BACK = 1 << 0, /* Apply the rules on packets that were

IBV_FLOW_ATTR_FLAGS_DONT_TRAP = 1 << 1, /* Rule doesn’t trap received packets, allowing

IBV_CREATE_FLOW(3) Libibverbs Programmer’s Manual IBV_CREATE_FLOW(3)

libibverbs 2016-03-15 IBV_CREATE_FLOW(3)



};

enum ibv_flow_spec_type {

IBV_FLOW_SPEC_ETH = 0x20, /* Flow specification of L2 header */

IBV_FLOW_SPEC_IPV4 = 0x30, /* Flow specification of IPv4 header */

IBV_FLOW_SPEC_IPV6 = 0x31, /* Flow specification of IPv6 header */

IBV_FLOW_SPEC_IPV4_EXT = 0x32, /* Extended flow specification of IPv4 */

IBV_FLOW_SPEC_TCP = 0x40, /* Flow specification of TCP header */

IBV_FLOW_SPEC_UDP = 0x41, /* Flow specification of UDP header */

IBV_FLOW_SPEC_VXLAN_TUNNEL = 0x50, /* Flow specification of VXLAN header */

IBV_FLOW_SPEC_INNER = 0x100, /* Flag making L2/L3/L4 specifications to be applied

IBV_FLOW_SPEC_ACTION_TAG = 0x1000, /* Action tagging matched packet */

IBV_FLOW_SPEC_ACTION_DROP = 0x1001, /* Action dropping matched packet */

};

Flow specification general structure:

struct ibv_flow_spec_xxx {

enum ibv_flow_spec_type type;

uint16_t size; /* Flow specification size = sizeof(struct ibv_flow_spec_xxx) */

struct ibv_flow_xxx_filter val;

struct ibv_flow_xxx_filter mask; /* Defines which bits from the filter value are applicable when looking for a

};

Each spec struct holds the relevant network layer parameters for matching. To enforce the match, the user sets a mask for

If the bit is set in the mask, the corresponding bit in the value should be matched.

Note that most vendors support either full mask (all "1"s) or zero mask (all "0"s).

Network parameters in the relevant network structs should be given in network order (big endian).

Flow domains and priority
Flow steering defines the concept of domain and priority. Each domain represents an application that

can attach a flow. Domains are prioritized. A higher priority domain will always supersede a lower

priority domain when their flow specifications overlap.

IB verbs have the higher priority domain.
In addition to the domain, there is priority within each of the domains. A lower priority numeric value

(higher priority) takes precedence over matching rules with higher numeric priority value (lower

priority). It is important to note that the priority value of a flow spec is used not only to establish the

precedence of conflicting flow matches but also as a way to abstract the order on which flow specs are

tested for matches. Flows with higher priorities will be tested before flows with lower priorities.

IBV_CREATE_FLOW(3) Libibverbs Programmer’s Manual IBV_CREATE_FLOW(3)

libibverbs 2016-03-15 IBV_CREATE_FLOW(3)



ibv_destroy_flow()
destroys the flow flow_id.

RETURN VALUE
ibv_create_flow() returns a pointer to the flow, or NULL if the request fails. In case of an error, errno is

updated.

ibv_destroy_flow() returns 0 on success, or the value of errno on failure (which indicates the failure

reason).

ERRORS
EINVAL

ibv_create_flow() flow specification, QP or priority are invalid

ibv_destroy_flow() flow_id is invalid

ENOMEM
Couldn’t create/destroy flow, not enough memory

ENXIO
Device managed flow steering isn’t currently supported

EPERM
No permissions to add the flow steering rule

NOTES
1. These verbs are available only for devices supporting

IBV_DEVICE_MANAGED_FLOW_STEERING and only for QPs of Transport Service Type

IBV_QPT_UD or IBV_QPT_RAW_PACKET
2. User must memset the spec struct with zeros before using it.

3. ether_type field in ibv_flow_eth_filter is the ethertype following the last VLAN tag of the packet.

4. Only rule type IBV_FLOW_ATTR_NORMAL supports

IBV_FLOW_ATTR_FLAGS_DONT_TRAP flag.

5. No specifications are needed for IBV_FLOW_ATTR_SNIFFER rule type.

EXAMPLE
Below flow_attr defines a rule in priority 0 to match a destination mac address and a source ipv4

address. For that, L2 and L3 specs are used.

If there is a hit on this rule, means the received packet has destination mac: 66:11:22:33:44:55 and

source ip: 0x0B86C806, the packet is steered to its attached qp.

IBV_CREATE_FLOW(3) Libibverbs Programmer’s Manual IBV_CREATE_FLOW(3)

libibverbs 2016-03-15 IBV_CREATE_FLOW(3)



struct raw_eth_flow_attr {

struct ibv_flow_attr attr;

struct ibv_flow_spec_eth spec_eth;

struct ibv_flow_spec_ipv4 spec_ipv4;

} __attribute__((packed));

struct raw_eth_flow_attr flow_attr = {

.attr = {

.comp_mask = 0,

.type = IBV_FLOW_ATTR_NORMAL,

.size = sizeof(flow_attr),

.priority = 0,

.num_of_specs = 2,

.port = 1,

.flags = 0,

},

.spec_eth = {

.type = IBV_FLOW_SPEC_ETH,

.size = sizeof(struct ibv_flow_spec_eth),

.val = {

.dst_mac = {0x66, 0x11, 0x22, 0x33, 0x44, 0x55},

.src_mac = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},

.ether_type = 0,

.vlan_tag = 0,

},

.mask = {

.dst_mac = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},

.src_mac = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},

.ether_type = 0,

.vlan_tag = 0,

}

},

.spec_ipv4 = {

.type = IBV_FLOW_SPEC_IPV4,

.size = sizeof(struct ibv_flow_spec_ipv4),

.val = {

.src_ip = 0x0B86C806,

.dst_ip = 0,

},

.mask = {

IBV_CREATE_FLOW(3) Libibverbs Programmer’s Manual IBV_CREATE_FLOW(3)

libibverbs 2016-03-15 IBV_CREATE_FLOW(3)



.src_ip = 0xFFFFFFFF,

.dst_ip = 0,

}

}

};

AUTHORS
Hadar Hen Zion <hadarh@mellanox.com>

Matan Barak <matanb@mellanox.com>

Yishai Hadas <yishaih@mellanox.com>

Maor Gottlieb <maorg@mellanox.com>

IBV_CREATE_FLOW(3) Libibverbs Programmer’s Manual IBV_CREATE_FLOW(3)

libibverbs 2016-03-15 IBV_CREATE_FLOW(3)


