
NAME
ieee - IEEE standard 754 for floating-point arithmetic

DESCRIPTION
The IEEE Standard 754 for Binary Floating-Point Arithmetic defines representations of floating-point

numbers and abstract properties of arithmetic operations relating to precision, rounding, and exceptional

cases, as described below.

IEEE STANDARD 754 Floating-Point Arithmetic
Radix: Binary.

Overflow and underflow:

Overflow goes by default to a signed infinity. Underflow is gradual.

Zero is represented ambiguously as +0 or -0.

Its sign transforms correctly through multiplication or division, and is preserved by addition of zeros

with like signs; but x-x yields +0 for every finite x. The only operations that reveal zero’s sign are

division by zero and copysign(x, +-0). In particular, comparison (x > y, x >= y, etc.) cannot be

affected by the sign of zero; but if finite x = y then infinity = 1/(x-y) != -1/(y-x) = -infinity.

Infinity is signed.

It persists when added to itself or to any finite number. Its sign transforms correctly through

multiplication and division, and (finite)/+-infinity = +-0 (nonzero)/0 = +-infinity. But

infinity-infinity, infinity*0 and infinity/infinity are, like 0/0 and sqrt(-3), invalid operations that

produce NaN. ...

Reserved operands (NaNs):

An NaN is (Not a Number). Some NaNs, called Signaling NaNs, trap any floating-point operation

performed upon them; they are used to mark missing or uninitialized values, or nonexistent elements

of arrays. The rest are Quiet NaNs; they are the default results of Invalid Operations, and propagate

through subsequent arithmetic operations. If x != x then x is NaN; every other predicate (x > y, x =

y, x < y, ...) is FALSE if NaN is involved.

Rounding:

Every algebraic operation (+, -, *, /, <sqrt>) is rounded by default to within half an ulp, and when the

rounding error is exactly half an ulp then the rounded value’s least significant bit is zero. (An ulp is

one Unit in the Last Place.) This kind of rounding is usually the best kind, sometimes provably so;

for instance, for every x = 1.0, 2.0, 3.0, 4.0, ..., 2.0**52, we find (x/3.0)*3.0 == x and (x/10.0)*10.0

== x and ... despite that both the quotients and the products have been rounded. Only rounding like

IEEE 754 can do that. But no single kind of rounding can be proved best for every circumstance, so

IEEE(3) FreeBSD Library Functions Manual IEEE(3)

FreeBSD 14.2-RELEASE January 26, 2005 FreeBSD 14.2-RELEASE

IEEE 754 provides rounding towards zero or towards +infinity or towards -infinity at the

programmer’s option.

Exceptions:

IEEE 754 recognizes five kinds of floating-point exceptions, listed below in declining order of

probable importance.

Exception Default Result

Invalid Operation NaN, or FALSE

Overflow +-infinity

Divide by Zero +-infinity

Underflow Gradual Underflow

Inexact Rounded value

NOTE: An Exception is not an Error unless handled badly. What makes a class of exceptions

exceptional is that no single default response can be satisfactory in every instance. On the other

hand, if a default response will serve most instances satisfactorily, the unsatisfactory instances

cannot justify aborting computation every time the exception occurs.

Data Formats
Single-precision:

Type name: float

Wordsize: 32 bits.

Precision: 24 significant bits, roughly like 7 significant decimals.

If x and x’ are consecutive positive single-precision numbers (they differ by 1 ulp), then

5.9e-08 < 0.5**24 < (x’-x)/x <= 0.5**23 < 1.2e-07.

Range: Overflow threshold = 2.0**128 = 3.4e38

Underflow threshold = 0.5**126 = 1.2e-38

Underflowed results round to the nearest integer multiple of

0.5**149 = 1.4e-45.

Double-precision:

Type name: double (On some architectures, long double is the same as double)

Wordsize: 64 bits.

IEEE(3) FreeBSD Library Functions Manual IEEE(3)

FreeBSD 14.2-RELEASE January 26, 2005 FreeBSD 14.2-RELEASE

Precision: 53 significant bits, roughly like 16 significant decimals.

If x and x’ are consecutive positive double-precision numbers (they differ by 1 ulp), then

1.1e-16 < 0.5**53 < (x’-x)/x <= 0.5**52 < 2.3e-16.

Range: Overflow threshold = 2.0**1024 = 1.8e308

Underflow threshold = 0.5**1022 = 2.2e-308

Underflowed results round to the nearest integer multiple of

0.5**1074 = 4.9e-324.

Extended-precision:

Type name: long double (when supported by the hardware)

Wordsize: 96 bits.

Precision: 64 significant bits, roughly like 19 significant decimals.

If x and x’ are consecutive positive extended-precision numbers (they differ by 1 ulp), then

1.0e-19 < 0.5**63 < (x’-x)/x <= 0.5**62 < 2.2e-19.

Range: Overflow threshold = 2.0**16384 = 1.2e4932

Underflow threshold = 0.5**16382 = 3.4e-4932

Underflowed results round to the nearest integer multiple of

0.5**16445 = 5.7e-4953.

Quad-extended-precision:

Type name: long double (when supported by the hardware)

Wordsize: 128 bits.

Precision: 113 significant bits, roughly like 34 significant decimals.

If x and x’ are consecutive positive quad-extended-precision numbers (they differ by 1 ulp), then

9.6e-35 < 0.5**113 < (x’-x)/x <= 0.5**112 < 2.0e-34.

Range: Overflow threshold = 2.0**16384 = 1.2e4932

Underflow threshold = 0.5**16382 = 3.4e-4932

IEEE(3) FreeBSD Library Functions Manual IEEE(3)

FreeBSD 14.2-RELEASE January 26, 2005 FreeBSD 14.2-RELEASE

Underflowed results round to the nearest integer multiple of

0.5**16494 = 6.5e-4966.

Additional Information Regarding Exceptions
For each kind of floating-point exception, IEEE 754 provides a Flag that is raised each time its

exception is signaled, and stays raised until the program resets it. Programs may also test, save and

restore a flag. Thus, IEEE 754 provides three ways by which programs may cope with exceptions for

which the default result might be unsatisfactory:

1. Test for a condition that might cause an exception later, and branch to avoid the exception.

2. Test a flag to see whether an exception has occurred since the program last reset its flag.

3. Test a result to see whether it is a value that only an exception could have produced.

CAUTION: The only reliable ways to discover whether Underflow has occurred are to test whether

products or quotients lie closer to zero than the underflow threshold, or to test the Underflow flag.

(Sums and differences cannot underflow in IEEE 754; if x != y then x-y is correct to full precision

and certainly nonzero regardless of how tiny it may be.) Products and quotients that underflow

gradually can lose accuracy gradually without vanishing, so comparing them with zero (as one

might on a VAX) will not reveal the loss. Fortunately, if a gradually underflowed value is destined

to be added to something bigger than the underflow threshold, as is almost always the case, digits

lost to gradual underflow will not be missed because they would have been rounded off anyway.

So gradual underflows are usually provably ignorable. The same cannot be said of underflows

flushed to 0.

At the option of an implementor conforming to IEEE 754, other ways to cope with exceptions may be

provided:

1. ABORT. This mechanism classifies an exception in advance as an incident to be handled by means

traditionally associated with error-handling statements like "ON ERROR GO TO ...". Different

languages offer different forms of this statement, but most share the following characteristics:

- No means is provided to substitute a value for the offending operation’s result and resume

computation from what may be the middle of an expression. An exceptional result is

abandoned.

- In a subprogram that lacks an error-handling statement, an exception causes the subprogram to

abort within whatever program called it, and so on back up the chain of calling subprograms

until an error-handling statement is encountered or the whole task is aborted and memory is

IEEE(3) FreeBSD Library Functions Manual IEEE(3)

FreeBSD 14.2-RELEASE January 26, 2005 FreeBSD 14.2-RELEASE

dumped.

2. STOP. This mechanism, requiring an interactive debugging environment, is more for the

programmer than the program. It classifies an exception in advance as a symptom of a

programmer’s error; the exception suspends execution as near as it can to the offending operation

so that the programmer can look around to see how it happened. Quite often the first several

exceptions turn out to be quite unexceptionable, so the programmer ought ideally to be able to

resume execution after each one as if execution had not been stopped.

3. ... Other ways lie beyond the scope of this document.

Ideally, each elementary function should act as if it were indivisible, or atomic, in the sense that ...

1. No exception should be signaled that is not deserved by the data supplied to that function.

2. Any exception signaled should be identified with that function rather than with one of its

subroutines.

3. The internal behavior of an atomic function should not be disrupted when a calling program

changes from one to another of the five or so ways of handling exceptions listed above, although

the definition of the function may be correlated intentionally with exception handling.

The functions in libm are only approximately atomic. They signal no inappropriate exception except

possibly ...

Over/Underflow

when a result, if properly computed, might have lain barely within range, and

Inexact in cabs(), cbrt(), hypot(), log10() and pow()

when it happens to be exact, thanks to fortuitous cancellation of errors.

Otherwise, ...

Invalid Operation is signaled only when

any result but NaN would probably be misleading.

Overflow is signaled only when

the exact result would be finite but beyond the overflow threshold.

Divide-by-Zero is signaled only when

a function takes exactly infinite values at finite operands.

Underflow is signaled only when

the exact result would be nonzero but tinier than the underflow threshold.

Inexact is signaled only when

greater range or precision would be needed to represent the exact result.

IEEE(3) FreeBSD Library Functions Manual IEEE(3)

FreeBSD 14.2-RELEASE January 26, 2005 FreeBSD 14.2-RELEASE

SEE ALSO
fenv(3), ieee_test(3), math(3)

An explanation of IEEE 754 and its proposed extension p854 was published in the IEEE magazine

MICRO in August 1984 under the title "A Proposed Radix- and Word-length-independent Standard for

Floating-point Arithmetic" by W. J. Cody et al. The manuals for Pascal, C and BASIC on the Apple

Macintosh document the features of IEEE 754 pretty well. Articles in the IEEE magazine COMPUTER

vol. 14 no. 3 (Mar. 1981), and in the ACM SIGNUM Newsletter Special Issue of Oct. 1979, may be

helpful although they pertain to superseded drafts of the standard.

STANDARDS
IEEE Std 754-1985

IEEE(3) FreeBSD Library Functions Manual IEEE(3)

FreeBSD 14.2-RELEASE January 26, 2005 FreeBSD 14.2-RELEASE

