
NAME
IEEE80211 - 802.11 network layer

SYNOPSIS
#include <net80211/ieee80211_var.h>

void

ieee80211_ifattach(struct ieee80211com *ic);

void

ieee80211_ifdetach(struct ieee80211com *ic);

int

ieee80211_mhz2ieee(u_int freq, u_int flags);

int

ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c);

u_int

ieee80211_ieee2mhz(u_int chan, u_int flags);

int

ieee80211_media_change(struct ifnet *ifp);

void

ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr);

int

ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode);

enum ieee80211_phymode

ieee80211_chan2mode(const struct ieee80211_channel *chan);

int

ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode);

int

ieee80211_media2rate(int mword);

DESCRIPTION

IEEE80211(9) FreeBSD Kernel Developer’s Manual IEEE80211(9)

FreeBSD 14.0-RELEASE-p11 January 26, 2021 FreeBSD 14.0-RELEASE-p11



IEEE 802.11 device drivers are written to use the infrastructure provided by the IEEE80211 software

layer. This software provides a support framework for drivers that includes ifnet cloning, state

management, and a user management API by which applications interact with 802.11 devices. Most

drivers depend on the IEEE80211 layer for protocol services but devices that off-load functionality may

bypass the layer to connect directly to the device.

A IEEE80211 device driver implements a virtual radio API that is exported to users through network

interfaces (aka vaps) that are cloned from the underlying device. These interfaces have an operating

mode (station, adhoc, hostap, wds, monitor, etc.) that is fixed for the lifetime of the interface. Devices

that can support multiple concurrent interfaces allow multiple vaps to be cloned. This enables

construction of interesting applications such as an AP vap and one or more WDS vaps or multiple AP

vaps, each with a different security model. The IEEE80211 layer virtualizes most 802.11 state and

coordinates vap state changes including scheduling multiple vaps. State that is not virtualized includes

the current channel and WME/WMM parameters. Protocol processing is typically handled entirely in

the IEEE80211 layer with drivers responsible purely for moving data between the host and device.

Similarly, IEEE80211 handles most ioctl(2) requests without entering the driver; instead drivers are

notified of state changes that require their involvement.

The virtual radio interface defined by the IEEE80211 layer means that drivers must be structured to

follow specific rules. Drivers that support only a single interface at any time must still follow these

rules.

Most of these functions require that attachment to the stack is performed before calling.

The ieee80211_ifattach() function attaches the wireless network interface ic to the 802.11 network stack

layer. This function must be called before using any of the IEEE80211 functions which need to store

driver state across invocations.

The ieee80211_ifdetach() function frees any IEEE80211 structures associated with the driver, and

performs Ethernet and BPF detachment on behalf of the caller.

The ieee80211_mhz2ieee() utility function converts the frequency freq (specified in MHz) to an IEEE

802.11 channel number. The flags argument is a hint which specifies whether the frequency is in the

2GHz ISM band (IEEE80211_CHAN_2GHZ) or the 5GHz band (IEEE80211_CHAN_5GHZ);

appropriate clipping of the result is then performed.

The ieee80211_chan2ieee() function converts the channel specified in *c to an IEEE channel number for

the driver ic. If the conversion would be invalid, an error message is printed to the system console. This

function REQUIRES that the driver is hooked up to the IEEE80211 subsystem.

IEEE80211(9) FreeBSD Kernel Developer’s Manual IEEE80211(9)

FreeBSD 14.0-RELEASE-p11 January 26, 2021 FreeBSD 14.0-RELEASE-p11



The ieee80211_ieee2mhz() utility function converts the IEEE channel number chan to a frequency (in

MHz). The flags argument is a hint which specifies whether the frequency is in the 2GHz ISM band

(IEEE80211_CHAN_2GHZ) or the 5GHz band (IEEE80211_CHAN_5GHZ); appropriate clipping of

the result is then performed.

The ieee80211_media_status() and ieee80211_media_change() functions are device-independent

handlers for ifmedia commands and are not intended to be called directly.

The ieee80211_setmode() function is called from within the 802.11 stack to change the mode of the

driver’s PHY; it is not intended to be called directly.

The ieee80211_chan2mode() function returns the PHY mode required for use with the channel chan.

This is typically used when selecting a rate set, to be advertised in beacons, for example.

The ieee80211_rate2media() function converts the bit rate rate (measured in units of 0.5Mbps) to an

ifmedia sub-type, for the device ic running in PHY mode mode. The ieee80211_media2rate() performs

the reverse of this conversion, returning the bit rate (in 0.5Mbps units) corresponding to an ifmedia sub-

type.

DATA STRUCTURES
The virtual radio architecture splits state between a single per-device ieee80211com structure and one or

more ieee80211vap structures. Drivers are expected to setup various shared state in these structures at

device attach and during vap creation but otherwise should treat them as read-only. The ieee80211com

structure is allocated by the IEEE80211 layer as adjunct data to a device’s ifnet; it is accessed through

the if_l2com structure member. The ieee80211vap structure is allocated by the driver in the "vap create"

method and should be extended with any driver-private state. This technique of giving the driver control

to allocate data structures is used for other IEEE80211 data structures and should be exploited to

maintain driver-private state together with public IEEE80211 state.

The other main data structures are the station, or node, table that tracks peers in the local BSS, and the

channel table that defines the current set of available radio channels. Both tables are bound to the

ieee80211com structure and shared by all vaps. Long-lasting references to a node are counted to guard

against premature reclamation. In particular every packet sent/received holds a node reference (either

explicitly for transmit or implicitly on receive).

The ieee80211com and ieee80211vap structures also hold a collection of method pointers that drivers

fill-in and/or override to take control of certain operations. These methods are the primary way drivers

are bound to the IEEE80211 layer and are described below.

DRIVER ATTACH/DETACH

IEEE80211(9) FreeBSD Kernel Developer’s Manual IEEE80211(9)

FreeBSD 14.0-RELEASE-p11 January 26, 2021 FreeBSD 14.0-RELEASE-p11



Drivers attach to the IEEE80211 layer with the ieee80211_ifattach() function. The driver is expected to

allocate and setup any device-private data structures before passing control. The ieee80211com

structure must be pre-initialized with state required to setup the IEEE80211 layer:

ic_ifp Backpointer to the physical device’s ifnet.

ic_caps Device/driver capabilities; see below for a complete description.

ic_channels Table of channels the device is capable of operating on. This is initially provided by the

driver but may be changed through calls that change the regulatory state.

ic_nchan Number of entries in ic_channels.

On return from ieee80211_ifattach() the driver is expected to override default callback functions in the

ieee80211com structure to register it’s private routines. Methods marked with a "*" must be provided

by the driver.

ic_vap_create*

Create a vap instance of the specified type (operating mode). Any fixed BSSID and/or

MAC address is provided. Drivers that support multi-bssid operation may honor the

requested BSSID or assign their own.

ic_vap_delete*

Destroy a vap instance created with ic_vap_create.

ic_getradiocaps

Return the list of calibrated channels for the radio. The default method returns the current

list of channels (space permitting).

ic_setregdomain

Process a request to change regulatory state. The routine may reject a request or constrain

changes (e.g. reduce transmit power caps). The default method accepts all proposed

changes.

ic_send_mgmt

Send an 802.11 management frame. The default method fabricates the frame using

IEEE80211 state and passes it to the driver through the ic_raw_xmit method.

ic_raw_xmit

Transmit a raw 802.11 frame. The default method drops the frame and generates a message

IEEE80211(9) FreeBSD Kernel Developer’s Manual IEEE80211(9)

FreeBSD 14.0-RELEASE-p11 January 26, 2021 FreeBSD 14.0-RELEASE-p11



on the console.

ic_updateslot

Update hardware state after an 802.11 IFS slot time change. There is no default method;

the pointer may be NULL in which case it will not be used.

ic_update_mcast

Update hardware for a change in the multicast packet filter. The default method prints a

console message.

ic_update_promisc

Update hardware for a change in the promiscuous mode setting. The default method prints

a console message.

ic_newassoc

Update driver/device state for association to a new AP (in station mode) or when a new

station associates (e.g. in AP mode). There is no default method; the pointer may be NULL

in which case it will not be used.

ic_node_alloc

Allocate and initialize a ieee80211_node structure. This method cannot sleep. The default

method allocates zero’d memory using malloc(9). Drivers should override this method to

allocate extended storage for their own needs. Memory allocated by the driver must be

tagged with M_80211_NODE to balance the memory allocation statistics.

ic_node_free

Reclaim storage of a node allocated by ic_node_alloc. Drivers are expected to interpose

their own method to cleanup private state but must call through this method to allow

IEEE80211 to reclaim it’s private state.

ic_node_cleanup

Cleanup state in a ieee80211_node created by ic_node_alloc. This operation is

distinguished from ic_node_free in that it may be called long before the node is actually

reclaimed to cleanup adjunct state. This can happen, for example, when a node must not be

reclaimed due to references held by packets in the transmit queue. Drivers typically

interpose ic_node_cleanup instead of ic_node_free.

ic_node_age

Age, and potentially reclaim, resources associated with a node. The default method ages

frames on the power-save queue (in AP mode) and pending frames in the receive reorder

IEEE80211(9) FreeBSD Kernel Developer’s Manual IEEE80211(9)

FreeBSD 14.0-RELEASE-p11 January 26, 2021 FreeBSD 14.0-RELEASE-p11



queues (for stations using A-MPDU).

ic_node_drain

Reclaim all optional resources associated with a node. This call is used to free up resources

when they are in short supply.

ic_node_getrssi

Return the Receive Signal Strength Indication (RSSI) in .5 dBm units for the specified

node. This interface returns a subset of the information returned by ic_node_getsignal.

The default method calculates a filtered average over the last ten samples passed in to

ieee80211_input(9) or ieee80211_input_all(9).

ic_node_getsignal

Return the RSSI and noise floor (in .5 dBm units) for a station. The default method

calculates RSSI as described above; the noise floor returned is the last value supplied to

ieee80211_input(9) or ieee80211_input_all(9).

ic_node_getmimoinfo

Return MIMO radio state for a station in support of the IEEE80211_IOC_STA_INFO ioctl

request. The default method returns nothing.

ic_scan_start*

Prepare driver/hardware state for scanning. This callback is done in a sleepable context.

ic_scan_end*

Restore driver/hardware state after scanning completes. This callback is done in a

sleepable context.

ic_set_channel*

Set the current radio channel using ic_curchan. This callback is done in a sleepable

context.

ic_scan_curchan

Start scanning on a channel. This method is called immediately after each channel change

and must initiate the work to scan a channel and schedule a timer to advance to the next

channel in the scan list. This callback is done in a sleepable context. The default method

handles active scan work (e.g. sending ProbeRequest frames), and schedules a call to

ieee80211_scan_next(9) according to the maximum dwell time for the channel. Drivers

that off-load scan work to firmware typically use this method to trigger per-channel scan

activity.

IEEE80211(9) FreeBSD Kernel Developer’s Manual IEEE80211(9)

FreeBSD 14.0-RELEASE-p11 January 26, 2021 FreeBSD 14.0-RELEASE-p11



ic_scan_mindwell

Handle reaching the minimum dwell time on a channel when scanning. This event is

triggered when one or more stations have been found on a channel and the minimum dwell

time has been reached. This callback is done in a sleepable context. The default method

signals the scan machinery to advance to the next channel as soon as possible. Drivers can

use this method to preempt further work (e.g. if scanning is handled by firmware) or ignore

the request to force maximum dwell time on a channel.

ic_recv_action

Process a received Action frame. The default method points to ieee80211_recv_action(9)

which provides a mechanism for setting up handlers for each Action frame class.

ic_send_action

Transmit an Action frame. The default method points to ieee80211_send_action(9) which

provides a mechanism for setting up handlers for each Action frame class.

ic_ampdu_enable

Check if transmit A-MPDU should be enabled for the specified station and AC. The

default method checks a per-AC traffic rate against a per-vap threshold to decide if A-

MPDU should be enabled. This method also rate-limits ADDBA requests so that requests

are not made too frequently when a receiver has limited resources.

ic_addba_request

Request A-MPDU transmit aggregation. The default method sets up local state and issues

an ADDBA Request Action frame. Drivers may interpose this method if they need to setup

private state for handling transmit A-MPDU.

ic_addb_response

Process a received ADDBA Response Action frame and setup resources as needed for

doing transmit A-MPDU.

ic_addb_stop

Shutdown an A-MPDU transmit stream for the specified station and AC. The default

method reclaims local state after sending a DelBA Action frame.

ic_bar_response

Process a response to a transmitted BAR control frame.

ic_ampdu_rx_start

Prepare to receive A-MPDU data from the specified station for the TID.

IEEE80211(9) FreeBSD Kernel Developer’s Manual IEEE80211(9)

FreeBSD 14.0-RELEASE-p11 January 26, 2021 FreeBSD 14.0-RELEASE-p11



ic_ampdu_rx_stop

Terminate receipt of A-MPDU data from the specified station for the TID.

Once the IEEE80211 layer is attached to a driver there are two more steps typically done to complete the

work:

1. Setup "radiotap support" for capturing raw 802.11 packets that pass through the device. This is

done with a call to ieee80211_radiotap_attach(9).

2. Do any final device setup like enabling interrupts.

State is torn down and reclaimed with a call to ieee80211_ifdetach(). Note this call may result in

multiple callbacks into the driver so it should be done before any critical driver state is reclaimed. On

return from ieee80211_ifdetach() all associated vaps and ifnet structures are reclaimed or inaccessible to

user applications so it is safe to teardown driver state without worry about being re-entered. The driver

is responsible for calling if_free(9) on the ifnet it allocated for the physical device.

DRIVER CAPABILITIES
Driver/device capabilities are specified using several sets of flags in the ieee80211com structure.

General capabilities are specified by ic_caps. Hardware cryptographic capabilities are specified by

ic_cryptocaps. 802.11n capabilities, if any, are specified by ic_htcaps. The IEEE80211 layer

propagates a subset of these capabilities to each vap through the equivalent fields: iv_caps,

iv_cryptocaps, and iv_htcaps. The following general capabilities are defined:

IEEE80211_C_STA Device is capable of operating in station (aka Infrastructure) mode.

IEEE80211_C_8023ENCAP Device requires 802.3-encapsulated frames be passed for transmit. By

default IEEE80211 will encapsulate all outbound frames as 802.11 frames

(without a PLCP header).

IEEE80211_C_FF Device supports Atheros Fast-Frames.

IEEE80211_C_TURBOP Device supports Atheros Dynamic Turbo mode.

IEEE80211_C_IBSS Device is capable of operating in adhoc/IBSS mode.

IEEE80211_C_PMGT Device supports dynamic power-management (aka power save) in station

mode.

IEEE80211_C_HOSTAP Device is capable of operating as an Access Point in Infrastructure mode.

IEEE80211(9) FreeBSD Kernel Developer’s Manual IEEE80211(9)

FreeBSD 14.0-RELEASE-p11 January 26, 2021 FreeBSD 14.0-RELEASE-p11



IEEE80211_C_AHDEMO Device is capable of operating in Adhoc Demo mode. In this mode the

device is used purely to send/receive raw 802.11 frames.

IEEE80211_C_SWRETRY Device supports software retry of transmitted frames.

IEEE80211_C_TXPMGT Device support dynamic transmit power changes on transmitted frames;

also known as Transmit Power Control (TPC).

IEEE80211_C_SHSLOT Device supports short slot time operation (for 802.11g).

IEEE80211_C_SHPREAMBLE

Device supports short preamble operation (for 802.11g).

IEEE80211_C_MONITOR Device is capable of operating in monitor mode.

IEEE80211_C_DFS Device supports radar detection and/or DFS. DFS protocol support can be

handled by IEEE80211 but the device must be capable of detecting radar

events.

IEEE80211_C_MBSS Device is capable of operating in MeshBSS (MBSS) mode (as defined by

802.11s Draft 3.0).

IEEE80211_C_WPA1 Device supports WPA1 operation.

IEEE80211_C_WPA2 Device supports WPA2/802.11i operation.

IEEE80211_C_BURST Device supports frame bursting.

IEEE80211_C_WME Device supports WME/WMM operation (at the moment this is mostly

support for sending and receiving QoS frames with EDCF).

IEEE80211_C_WDS Device supports transmit/receive of 4-address frames.

IEEE80211_C_BGSCAN Device supports background scanning.

IEEE80211_C_TXFRAG Device supports transmit of fragmented 802.11 frames.

IEEE80211_C_TDMA Device is capable of operating in TDMA mode.

The follow general crypto capabilities are defined. In general IEEE80211 will fall-back to software

IEEE80211(9) FreeBSD Kernel Developer’s Manual IEEE80211(9)

FreeBSD 14.0-RELEASE-p11 January 26, 2021 FreeBSD 14.0-RELEASE-p11



support when a device is not capable of hardware acceleration of a cipher. This can be done on a per-

key basis. IEEE80211 can also handle software Michael calculation combined with hardware AES

acceleration.

IEEE80211_CRYPTO_WEP

Device supports hardware WEP cipher.

IEEE80211_CRYPTO_TKIP

Device supports hardware TKIP cipher.

IEEE80211_CRYPTO_AES_OCB

Device supports hardware AES-OCB cipher.

IEEE80211_CRYPTO_AES_CCM

Device supports hardware AES-CCM cipher.

IEEE80211_CRYPTO_TKIPMIC

Device supports hardware Michael for use with TKIP.

IEEE80211_CRYPTO_CKIP

Devices supports hardware CKIP cipher.

The follow general 802.11n capabilities are defined. The first capabilities are defined exactly as they

appear in the 802.11n specification. Capabilities beginning with IEEE80211_HTC_AMPDU are used

solely by the IEEE80211 layer.

IEEE80211_HTCAP_CHWIDTH40

Device supports 20/40 channel width operation.

IEEE80211_HTCAP_SMPS_DYNAMIC

Device supports dynamic SM power save operation.

IEEE80211_HTCAP_SMPS_ENA

Device supports static SM power save operation.

IEEE80211_HTCAP_GREENFIELD

Device supports Greenfield preamble.

IEEE80211_HTCAP_SHORTGI20

Device supports Short Guard Interval on 20MHz channels.

IEEE80211(9) FreeBSD Kernel Developer’s Manual IEEE80211(9)

FreeBSD 14.0-RELEASE-p11 January 26, 2021 FreeBSD 14.0-RELEASE-p11



IEEE80211_HTCAP_SHORTGI40

Device supports Short Guard Interval on 40MHz channels.

IEEE80211_HTCAP_TXSTBC

Device supports Space Time Block Convolution (STBC) for transmit.

IEEE80211_HTCAP_RXSTBC_1STREAM

Device supports 1 spatial stream for STBC receive.

IEEE80211_HTCAP_RXSTBC_2STREAM

Device supports 1-2 spatial streams for STBC receive.

IEEE80211_HTCAP_RXSTBC_3STREAM

Device supports 1-3 spatial streams for STBC receive.

IEEE80211_HTCAP_MAXAMSDU_7935

Device supports A-MSDU frames up to 7935 octets.

IEEE80211_HTCAP_MAXAMSDU_3839

Device supports A-MSDU frames up to 3839 octets.

IEEE80211_HTCAP_DSSSCCK40

Device supports use of DSSS/CCK on 40MHz channels.

IEEE80211_HTCAP_PSMP Device supports PSMP.

IEEE80211_HTCAP_40INTOLERANT

Device is intolerant of 40MHz wide channel use.

IEEE80211_HTCAP_LSIGTXOPPROT

Device supports L-SIG TXOP protection.

IEEE80211_HTC_AMPDU Device supports A-MPDU aggregation. Note that any 802.11n compliant

device must support A-MPDU receive so this implicitly means support for

transmit of A-MPDU frames.

IEEE80211_HTC_AMSDU Device supports A-MSDU aggregation. Note that any 802.11n compliant

device must support A-MSDU receive so this implicitly means support for

transmit of A-MSDU frames.

IEEE80211(9) FreeBSD Kernel Developer’s Manual IEEE80211(9)

FreeBSD 14.0-RELEASE-p11 January 26, 2021 FreeBSD 14.0-RELEASE-p11



IEEE80211_HTC_HT Device supports High Throughput (HT) operation. This capability must

be set to enable 802.11n functionality in IEEE80211.

IEEE80211_HTC_SMPS Device supports MIMO Power Save operation.

IEEE80211_HTC_RIFS Device supports Reduced Inter Frame Spacing (RIFS).

SEE ALSO
ioctl(2), ieee80211_amrr(9), ieee80211_beacon(9), ieee80211_bmiss(9), ieee80211_crypto(9),

ieee80211_ddb(9), ieee80211_input(9), ieee80211_node(9), ieee80211_output(9), ieee80211_proto(9),

ieee80211_radiotap(9), ieee80211_regdomain(9), ieee80211_scan(9), ieee80211_vap(9), ifnet(9),

malloc(9)

HISTORY
The IEEE80211 series of functions first appeared in NetBSD 1.5, and were later ported to FreeBSD 4.6.

This man page was updated with the information from NetBSD IEEE80211 man page.

AUTHORS
The original NetBSD IEEE80211 man page was written by Bruce M. Simpson <bms@FreeBSD.org>

and Darron Broad <darron@kewl.org>.

IEEE80211(9) FreeBSD Kernel Developer’s Manual IEEE80211(9)

FreeBSD 14.0-RELEASE-p11 January 26, 2021 FreeBSD 14.0-RELEASE-p11


