
NAME
ieee80211_proto - 802.11 state machine support

SYNOPSIS
#include <net80211/ieee80211_var.h>

void

ieee80211_start_all(struct ieee80211com *);

void

ieee80211_stop_all(struct ieee80211com *);

void

ieee80211_suspend_all(struct ieee80211com *);

void

ieee80211_resume_all(struct ieee80211com *);

enum ieee80211_state;

int

ieee80211_new_state(struct ieee80211vap *, enum ieee80211_state, int);

void

ieee80211_wait_for_parent(struct ieee80211com *);

DESCRIPTION
The net80211 layer that supports 802.11 device drivers uses a state machine to control operation of vaps.

These state machines vary according to the vap operating mode. Station mode state machines follow the

802.11 MLME states in the protocol specification. Other state machines are simpler and reflect

operational work such as scanning for a BSS or automatically selecting a channel to operate on. When

multiple vaps are operational the state machines are used to coordinate operation such as choosing a

channel. The state machine mechanism also serves to bind the net80211 layer to a driver; this is

described more below.

The following states are defined for state machines:

IEEE80211_S_INIT Default/initial state. A vap in this state should not hold any dynamic state (e.g.

entries for associated stations in the node table). The driver must quiesce the

hardware; e.g. there should be no interrupts firing.

IEEE80211_PROTO(9) FreeBSD Kernel Developer’s Manual IEEE80211_PROTO(9)

FreeBSD 14.0-RELEASE-p11 August 4, 2009 FreeBSD 14.0-RELEASE-p11



IEEE80211_S_SCAN Scanning for a BSS or choosing a channel to operate on. Note that scanning

can also take place in other states (e.g. when background scanning is active);

this state is entered when initially bringing a vap to an operational state or after

an event such as a beacon miss (in station mode).

IEEE80211_S_AUTH Authenticating to an access point (in station mode). This state is normally

reached from IEEE80211_S_SCAN after selecting a BSS, but may also be

reached from IEEE80211_S_ASSOC or IEEE80211_S_RUN if the

authentication handshake fails.

IEEE80211_S_ASSOC Associating to an access point (in station mode). This state is reached from

IEEE80211_S_AUTH after successfully authenticating or from

IEEE80211_S_RUN if a DisAssoc frame is received.

IEEE80211_S_CAC Doing Channel Availability Check (CAC). This state is entered only when

DFS is enabled and the channel selected for operation requires CAC.

IEEE80211_S_RUN Operational. In this state a vap can transmit data frames, accept requests for

stations associating, etc. Beware that data traffic is also gated by whether the

associated "port" is authorized. When WPA/802.11i/802.1x is operational

authorization may happen separately; e.g. in station mode wpa_supplicant(8)

must complete the handshakes and plumb the necessary keys before a port is

authorized. In this state a BSS is operational and associated state is valid and

may be used; e.g. ic_bss and ic_bsschan are guaranteed to be usable.

IEEE80211_S_CSA Channel Switch Announcement (CSA) is pending. This state is reached only

from IEEE80211_S_RUN when either a CSA is received from an access point

(in station mode) or the local station is preparing to change channel. In this

state traffic may be muted depending on the Mute setting in the CSA.

IEEE80211_S_SLEEP Asleep to save power (in station mode). This state is reached only from

IEEE80211_S_RUN when power save operation is enabled and the local

station is deemed sufficiently idle to enter low power mode.

Note that states are ordered (as shown above); e.g. a vap must be in the IEEE80211_S_RUN or "greater"

before it can transmit frames. Certain net80211 data are valid only in certain states; e.g. the iv_bsschan

that specifies the channel for the operating BSS should never be used except in IEEE80211_S_RUN or

greater.

STATE CHANGES

IEEE80211_PROTO(9) FreeBSD Kernel Developer’s Manual IEEE80211_PROTO(9)

FreeBSD 14.0-RELEASE-p11 August 4, 2009 FreeBSD 14.0-RELEASE-p11



State machine changes are typically handled internal to the net80211 layer in response to ioctl(2)

requests, received frames, or external events such as a beacon miss. The ieee80211_new_state()

function is used to initiate a state machine change on a vap. The new state and an optional argument are

supplied. The request is initially processed to handle coordination of multiple vaps. For example, only

one vap at a time can be scanning, if multiple vaps request a change to IEEE80211_S_SCAN the first

will be permitted to run and the others will be deferred until the scan operation completes at which time

the selected channel will be adopted. Similarly net80211 handles coordination of combinations of vaps

such as an AP and station vap where the station may need to roam to follow the AP it is associated to

(dragging along the AP vap to the new channel). Another important coordination is the handling of

IEEE80211_S_CAC and IEEE80211_S_CSA. No more than one vap can ever be actively changing

state at a time. In fact net80211 single-threads the state machine logic in a dedicated taskqueue(9)

thread that is also used to synchronize work such as scanning and beacon miss handling.

After multi-vap scheduling/coordination is done the per-vap iv_newstate method is called to carry out

the state change work. Drivers use this entry to setup private state and then dispatch the call to the

net80211 layer using the previously defined method pointer (in OOP-parlance they call the "super

method" ).

net80211 handles two state changes specially. On transition to IEEE80211_S_RUN the

IFF_DRV_OACTIVE bit on the vap’s transmit queue is cleared so traffic can flow. On transition to

IEEE80211_S_INIT any state in the scan cache associated with the vap is flushed and any frames

pending on the transmit queue are flushed.

DRIVER INTEGRATION
Drivers are expected to override the iv_newstate method to interpose their own code and handle setup

work required by state changes. Otherwise drivers must call ieee80211_start_all() in response to being

marked up through an SIOCSIFFLAGS ioctl request and they should use ieee80211_suspend_all() and

ieee80211_resume_all() to implement suspend/resume support.

There is also an ieee80211_stop_all() call to force all vaps to an IEEE80211_S_INIT state but this

should not be needed by a driver; control is usually handled by net80211 or, in the case of card eject or

vap destroy, work will be initiated outside the driver.

SEE ALSO
ioctl(2), wpa_supplicant(8), ieee80211(9), ifnet(9), taskqueue(9)

HISTORY
The state machine concept was part of the original ieee80211 code base that first appeared in

NetBSD 1.5.

IEEE80211_PROTO(9) FreeBSD Kernel Developer’s Manual IEEE80211_PROTO(9)

FreeBSD 14.0-RELEASE-p11 August 4, 2009 FreeBSD 14.0-RELEASE-p11


